Graphene 3D printing: introduction and market status - Page 4

Last updated on Thu 04/07/2024 - 08:08

Grafoid launches a new company to focus on graphene 3D Printing

Canadian graphene developer Grafoid announced that it launched a new company, called Grafprint3D, to develop and produce 3D printing materials based on Grafoid's MesoGraf graphene - although Grafprint3D's current materials are actually graphene inks for screen printing and inkjet printing and not 3D printed ones.

Grafprint3D graphene inks photo (May 2019)

Grafoid says that initially the new company will focus on wearable device fabrication with biocompatible polymers, biomaterial substrates for cell therapy engineering research, and rapid product prototyping with printable advanced nanomaterials.

Read the full story Posted: May 25,2019

Versarien to collaborate with Chinese aerospace company

Versarien has announced its plans to enter an agreement with a large state-owned Chinese aerospace company. The Partner is said to mainly be engaged in the research, design, manufacture and operation of various aerospace systems.

The agreement details the parties' desire to collaborate and ultimately enter into a strategic cooperation covering research, development and manufacturing in order to accelerate the industrialization and market for graphene and other Versarien 2D materials, including Hexotene, in the Chinese aerospace sector. This will include exploring their uses within the fields of, amongst others, microwave and electromagnetic radiation shielding, heat dispersion coatings, 3D printing and flexible wearable devices.

Read the full story Posted: Dec 19,2018

Zenyatta provides updates on fund-raising and graphene applications progress

Zenyatta Ventures has announced its plans to raise up to $3,000,000 CAD (around $2,240,000 USD) on a non-brokered private placement basis. The proceeds will be used for bulk sampling, environmental assessment and community engagement.

Zentayya also provided an update on its graphene market development work ,which has led to the creation of five significant potential market verticals for the Company which include aerospace, biomedical, water treatment, transportation and civil engineering.

Read the full story Posted: Dec 12,2018

Graphene oxide and alginate combine to create new ‘smart’ material with potential biomedical, environmental uses

Researchers at Brown University, the University of Wisconsin and the National University of Singapore have developed a way of reinforcing hydrogel materials made from alginate, a natural material derived from seaweeds that’s currently used in a variety of biomedical applications, by incorporating graphene oxide into its structure.

Graphene oxide and alginate combine to create new ‘smart’ material with potential biomedical, environmental uses image

 

This produces a material that can be 3D printed into structures that are stiffer and more fracture resistant than alginate alone - an important achievement as alginate tends to be fragile and thus hard to work with. Furthermore, the material is also capable of becoming stiffer or softer in response to different chemical treatments, meaning it could be used to make smart materials that are able to react to their surroundings in real time. In addition, alginate-GO retains alginate’s ability to repel oils, giving the new material potential as an anti-fouling coating.

Read the full story Posted: Nov 25,2018

Bionic mushroom interacts with bacteria and graphene to generate electricity

In a recent study, researchers from the Stevens Institute of Technology in the U.S have come up with an original idea - they designed a bionic mushroom that uses graphene to produce electricity. More accurately, the researchers have generated mushrooms patterned with energy-producing bacteria and an electrode network.

Bionic mushroom generates electricity image

Many examples of organisms that live closely together and interact with each other exist in nature. In some cases, this symbiotic relationship is mutually beneficial. The research team wanted to engineer an artificial symbiosis between button mushrooms and cyanobacteria. In their vision, the mushroom would provide shelter, moisture and nutrients, while bacteria 3D-printed on the mushroom's cap would supply energy by photosynthesis. Graphene nanoribbons printed alongside the bacteria could capture electrons released by the microbes during photosynthesis, producing bio-electricity.

Read the full story Posted: Nov 08,2018 - 1 comment

New graphene scaffold capacitors break capacitance records

Researchers at the University of California, Santa Cruz and Lawrence Livermore National Laboratory in California have developed a new fabrication technique to make capacitors enhanced with graphene. The resulting devices store a large amount of charge over a given surface area - an important metric for measuring the performance of a capacitor.

The new technique uses a 3D printer to construct a microscopic scaffold with porous graphene and then fills the structure with a kind of material called a pseudocapacitive gel, which is a kind of capacitor material that also behaves like a battery in some ways.

Read the full story Posted: Oct 21,2018

An interview with Graphmatech's CFO, Björn Lindh

Sweden-based Graphmatech develops and produces novel graphene-based nanocomposite materials, under the Aros Graphene brand. The company recently secured an investment from ABB and Walerud Ventures, and the company's CFO, Bjorn Lindh, was kind enough to answer a few questions we had to him.

Björn Lindh - Graphmatech

Q: Thank you for your time Bjorn. Can you give us a short introduction to Graphmatech's Aros Graphene materials, and how it differs from other graphene materials on the market?

Graphmatech has invented the novel material, Aros Graphene that keeps most of graphene's features, while making it easy to use in large industrial scales by preventing agglomeration, which is a key challenge for the use of graphene. Aros graphene is produced in powder form and can be used as additive, as coating or even in 3D-printing. The market introduction and launch of first products, filaments and thermal paste, will be introduced to the market in 2019.

Read the full story Posted: Sep 28,2018

Liquid X and Bonbouton to collaborate on graphene-enhanced textile-based sensors

Liquid X Printed Metals, an advanced material manufacturer of functional metallic inks, has announced a collaboration effort with Bonbouton (a company focused on developing thermal sensing applications using a smart textile platform) to build graphene-enhanced temperature and pressure sensors directly on textiles using additive manufacturing techniques.

Through Bonbouton's inkjet-printable graphene technology, licensed from the Stevens Institute of Technology, the Company is developing thin and mechanically flexible sensors for wearable physiology monitoring. This gives consumers wearable personal health options that are unobtrusive, comfortable and attractive, while still enabling the collection of accurate, precise and useful data.

Read the full story Posted: Sep 08,2018

A new method may enable 3D printing complex structures with graphene

Researchers from Virginia Tech and Lawrence Livermore National Laboratory have developed a new way to 3D print with graphene. Graphene has previously been used in extrusion-based processes to print single sheets and basic structures at a resolution of around 100 microns, but this latest research shows it is also possible to use a stereolithography-based technique to print pretty much any desired structure down to 10 microns, close to the size of actual graphene sheets. The ability to 3D print functional parts in graphene could benefit many industries and products.

Graphene aerogel for 3d printing image

Now a designer can design three-dimensional topology comprised of interconnected graphene sheets, said Xiaoyu Rayne Zheng, assistant professor with the Department of Mechanical Engineering in the College of Engineering and director of the Advanced Manufacturing and Metamaterials Lab. This new design and manufacturing freedom will lead to optimization of strength, conductivity, mass transport, strength, and weight density that are not achievable in graphene aerogels.

Read the full story Posted: Sep 07,2018

Graphematech and Add North 3D develop novel graphene-enhanced 3D printing filaments

A collaboration between two innovative material technology startups Graphmatech and Add North 3D (a Swedish 3D materials developer specialized in FDM materials) has developed novel conductive Aros Graphene-based filaments for 3D printing. This may open up many new different 3D-printing applications such as thermal management components, circuit boards and efficient electromagnetic and radio frequency shielding.

The recently developed 3D-printing technology based on Graphematech's Aros Graphene may grant the ability to control the exact level of conductivity of the filament. The new filaments will now be optimized and go through beta testing with a reference group before it is expected to reach the market in 6-12 month.

Read the full story Posted: Jun 26,2018