Graphene applications - Page 3

Researchers develop platform that integrates 2D polaritons with detection system for miniaturized spectrometers

Polaritons are coupled excitations of electromagnetic waves with either charged particles or vibrations in the atomic lattice of a given material. One of their most attractive properties is the capacity to confine light at the nanoscale, which is even more extreme in two-dimensional (2D) materials. 2D polaritons have been investigated by optical measurements using an external photodetector. However, their effective spectrally resolved electrical detection via far-field excitation remains unexplored. This hinders their exploitation in crucial applications such as sensing, hyperspectral imaging, and optical spectrometry, banking on their potential for integration with silicon technologies. 

Recently, researchers from Spain's ICFO, the University of Ioannina, Universidade do Minho, the International Iberian Nanotechnology Laboratory, Kansas State University, the National Institute for Materials Science (Tsukba, Japan), POLIMA (University of Southern Denmark) and URCI (Institute of Materials Science and Computing, have reported on the electrical spectroscopy of polaritonic nanoresonators based on a high-quality 2D-material heterostructure, which serves at the same time as the photodetector and the polaritonic platform. Subsequently, the team electrically detected these mid-infrared resonators by near-field coupling to a graphene pn-junction. The nanoresonators simultaneously exhibited extreme lateral confinement and high-quality factors. 

Read the full story Posted: Oct 23,2024

Lyten plans $1B Lithium-Sulfur battery Gigafactory in Nevada

U.S-based Lyten announced plans to invest more than $1 billion to build the world’s first Lithium-Sulfur battery gigafactory. The facility will be located near Reno, Nevada, and will have the capability to produce up to 10 GWh of batteries annually at full scale. Phase 1 of the facility is scheduled to come online in 2027.

Lyten’s proprietary processes permanently sequester carbon from methane in the form of 3D Graphene and utilize the supermaterial to develop decarbonizing applications. Lyten has received more than $425 million in investment from companies including Stellantis, FedEx, Honeywell, Walbridge, the European Investment Fund, and the Luxembourg Future Fund.

Read the full story Posted: Oct 19,2024

Researchers design a graphene-based 'electronic tongue' that detects liquid differences, spoilage, and food safety with AI accuracy

Researchers from Penn State University and NASA Goddard Space Flight Center recently developed an 'electronic tongue' based on a graphene-based ion-sensitive field-effect transistor, capable of identifying differences in similar liquids, such as milk with varying water content; diverse products, including soda types and coffee blends; signs of spoilage in fruit juices; and instances of food safety concerns. The team also found that results were even more accurate when artificial intelligence (AI) used its own assessment parameters to interpret the data generated by the electronic tongue.

Graphene ISFET chip mounted on a printed circuit board (PCB). Image from: Nature

The sensor and AI can broadly detect and classify various substances while collectively assessing their respective quality, authenticity and freshness. This assessment has also provided the researchers with a view into how AI makes decisions, which could lead to better AI development and applications, they said.

Read the full story Posted: Oct 11,2024

Researchers design graphene-based RF NEMS switches with excellent performance

Researchers from the Taiyuan Institute of Technology have introduced a novel graphene RF NEMS capacitive switch and conducted an extensive analysis of its RF performance within the UWB frequency range of DC ~ 140 GHz. 

Schematic representation of the proposed graphene RF NEMS capacitive switch: (a) a 3D isometric view; (b) a top view. Image credit: Scientific Reports

The monolayer graphene RF NEMS switch is characterized by its low pull-in voltage, rapid switching time, and superior RF performance, contrasting with the comparatively inferior performance of multilayer graphene RF NEMS switches. 

Read the full story Posted: Oct 08,2024

DUER launches graphene-enhanced jacket

DUER, an innovative denim company, has launched its new Performance Flannel that is enhanced with graphene. The fabric is said to regulate body temperature without feeling heavy, fight static and stay fresh longer. 

“Graphene caught our attention as a Nobel prize-winning nano-fiber with exceptional performance properties that don’t impact a fabric’s weight, breathability, or soft feel,” said Gary Lennett, CEO of DUER. “We’ve integrated graphene into our Performance Flannel to provide enhanced thermal regulation— keeping you warm when it’s cold, and cool when it’s hot. Added to that, it fights static and keeps clothing fresh longer, marking a significant step in the future of textiles.”

Read the full story Posted: Oct 07,2024

AMD announces collaboration with Xyntra Chemicals

Advanced Material Development (AMD) has entered into a commercial and technical collaboration with Xyntra Chemicals, a prominent player in the supply, manufacture, and development of polymers. The collaboration aims to develop a range of unique customized latex polymers to support AMD’s colorimetric smart sensing technologies. These polymers will be enhanced by graphene, along with additional nanomaterials. 

The immediate priority of the new partnership is to optimize Xyntra’s polymer technology to support the early-stage production of AMD's innovative vaccine vial monitor technology and create the production-ready formula that will enable Xyntra to manufacture the solution at scale under license.

Read the full story Posted: Sep 27,2024

First Graphene and Halocell enter agreement to supply graphene for perovskite solar cells

First Graphene has secured an agreement with Halocell Energy to supply graphene for the manufacture of perovskite solar cells.

FGR secures deal with perovskite solar cell manufacturer Halocell Energy image

The initial two-year agreement will result in First Graphene providing its PureGRAPH material to Halocell for use as a high-performing coating for perovskite solar cells. By incorporating PureGRAPH into its products, Halocell Energy hopes to expedite its manufacturing process and enhance light absorbing performance, which will enable the company to scale up commercial production to meet demand.

Read the full story Posted: Sep 26,2024

New platform allows scientists to study materials at the level of individual molecules

University of Illinois Chicago scientists have created a new platform to study materials at the level of individual molecules. The approach is a significant breakthrough for creating nanotechnologies that could revolutionize computing, energy and other fields.

Two-dimensional materials, such as graphene, are made from a single layer of atoms. Studying and designing these ultrathin materials requires highly specialized methods. The laboratory of Nan Jiang, associate professor of chemistry and physics at UIC, pioneered a new method to simultaneously examine the structural, electronic and chemical properties of these nanomaterials. The platform combines two scientific approaches — scanning probe microscopy and optical spectroscopy — to view materials and assess how they interact with chemicals.

Read the full story Posted: Sep 21,2024

Researchers combine graphene and silk for advanced microelectronics, wearables and next-gen computing applications

While silk protein has been used in designer electronics, its use is currently limited in part because silk fibers are a messy tangle of spaghetti-like strands. To address this, researchers from Pacific Northwest National Laboratory, University of Washington, Lawrence Berkeley National Laboratory, North Carolina State University and Xiamen University have developed a uniform two-dimensional (2D) layer of silk protein fragments, or "fibroins," on graphene. 

Scheme of silk fibroin assembly on highly oriented pyrolytic graphite (HOPG) characterized by in situ AFM. Image from Science Advances

The scientists explained that their work provides a reproducible method for silk protein self-assembly that is essential for designing and fabricating silk-based electronics. They said that the system is nontoxic and water-based, which is vital for biocompatibility.

Read the full story Posted: Sep 19,2024