Graphene batteries: Introduction and Market News - Page 19
Researchers use graphene to enhance hybrid redox flow cells
Researchers from the Warwick Manufacturing Group (WMG) at the University of Warwick, together with members from the Imperial College London, have enhanced three hybrid flow cells with the use of nitrogen doped graphene - graphene sheets exposed to nitrogen plasma - using a binder-free electrophoresis (EPD) technique.
The new technique could potentially promote wider acceptance and renewable energy sources - such as hydro and solar power - currently limited by intermittency problems that prevent mass adoption of these sources into larger, national-scale power grids. One idea explored in working around this limitation is the use of long-duration battery technologies, like redox flow batteries. However, despite its longevity and performance, current costs have become significant tradeoff considerations and also hampers widespread adoption.
Graphene-Info updates all its graphene market report (January 2021)
Today we published new versions of all our graphene market reports. Graphene-Info provides comprehensive niche graphene market reports, and our reports cover everything you need to know about these niche markets. The reports are now updated to January 2021.
The Graphene Batteries Market Report:
- The advantages using graphene batteries
- The different ways graphene can be used in batteries
- Various types of graphene materials
- What's on the market today
- Detailed specifications of some graphene-enhanced anode material
- Personal contact details into most graphene developers
The report package provides a good introduction to the graphene battery - present and future. It includes a list of all graphene companies involved with batteries and gives detailed specifications of some graphene-enhanced anode materials and contact details into most graphene developers. Read more here!
A graphene industry, market and new conference series interview with Dr. Khasha Ghaffarzadeh
Our friend Dr. Khasha Ghaffarzadeh, a well respected graphene market analyst, is launching a new service called TechBlick that is a subscription-based online and all-year round event focused on advanced materials such as graphene, 2D materials, CNTs, boron nitrides, QDs, and more.
Graphene-Info partnered with TechBlick, to provide our readers an exclusive 25% discount on the TechBlick subscription. We took advantage of this launch to discuss the graphene market and industry with Dr. Ghaffarzadeh and also discuss the new service.
Hello Kasha. How do you see the graphene market shaping up in 2021?
I have closely followed and examined the graphene industry for a full decade. The landscape has certainly changed. Many companies have come and gone, and many once considered revolutionary applications are now ruled out, but overall, the industry is now at a tipping point.
We think 2021/2022 will be a turning point, setting the industry on its growth path, despite the delays caused these past 12 months due to Covid. For some, these delays have been painful as projects were pushed back or partners or customers dropped graphene to focus on other core areas. Many undershot their growth expectations, and some had difficult cash flow situations.
Graphene enables stretchable micro-supercapacitors to self-power wearable devices
An international team of researchers, led by Huanyu "Larry" Cheng, a Professor at Penn State, has used graphene to design a stretchable system that can harvest energy from human breathing and motion for use in wearable health-monitoring devices.
According to Cheng, current versions of batteries and supercapacitors powering wearable and stretchable health-monitoring and diagnostic devices have many shortcomings, including low energy density and limited stretchability. "This is something quite different than what we have worked on before, but it is a vital part of the equation," Cheng said, noting that his research group and collaborators tend to focus on developing the sensors in wearable devices. "While working on gas sensors and other wearable devices, we always need to combine these devices with a battery for powering. Using micro-supercapacitors gives us the ability to self-power the sensor without the need for a battery."
Graphene coating could help create higher energy density lithium-ion batteries
Researchers at Northwestern University and Clemson University in the U.S, along with researchers from Sejong University in Korea, have examined the origins of degradation in high energy density LIB cathode materials and developed graphene-based strategies for mitigating those degradation mechanisms and improving LIB performance.
Their research could be valuable for many emerging applications, particularly electric vehicles and grid-level energy storage for renewable energy sources, such as wind and solar.
GAC to test its "super-fast-charging battery" in production vehicles
After announcing its plan (In May 2020) to mass produce graphene-enhanced battery for EVs by the end of 2020, and setting up a unit that specializes in graphene and has begun research and development of fast-charging technology for electric vehicles in September 2020, GAC has now stated that it expects to test its battery in production vehicles by the end of this year, however - whether it can eventually be put into mass production will have to await the results of real-vehicle testing.
According to GAC's claim, the graphene "super-fast-charging battery" can be recharged to 85 percent in just eight minutes. If this proves to be true, the charging time will be comparable to the refueling time of traditional fuel cars, which by itself will be great news for the EV market.
Directa Plus announces "fantastic achievement" with partner NexTech's graphene-enhanced prototype battery
Directa Plus, which has recently signed a non-binding memorandum of understanding with lithium sulphur batteries company NexTech Batteries, has announced that using its G+ pristine graphene nanoplatelets, NexTech managed to achieve more than 400 watt-hours per kilogram in a practical system, "the holy grail" for many battery applications.
NexTech produced several prototypes using its proprietary cathode and electrolyte materials producing 410Wh/kg of specific energy at a weight only slightly below 30 grams. For comparison, standard lithium-ion batteries have an energy density of 100-265 Wh/kg.
Researchers shed light on ionic interactions with graphene and water
Researchers led by Northwestern University engineers and Argonne National Laboratory scientists have reached new findings regarding the role of ionic interaction within graphene and water. Their insights could open the door to the design of new energy-efficient electrodes for batteries or provide the backbone ionic materials for neuromorphic computing applications.
"Every time you have interactions with ions in matter, the medium is very important. Water plays a vital role in mediating interactions between ions, molecules, and interfaces, which lead to a variety of natural and technological processes," said Monica Olvera de La Cruz, Lawyer Taylor Professor of Materials Science and Engineering, who led the research. "Yet, there is much we don't understand about how water-mediated interactions are influenced by nanoconfinement at the nanoscale."
Talga Resources receives government grant for anode refinery feasibility study
Battery anode developer Talga Resources has announced that it has received a commitment for a ~AU$1.8 million (around USD1.3 million) UK Government grant to complete a feasibility study into the commerciality of a Talga UK Anode Refinery.
The UK government has recently announced a series of economic stimulus packages, including a £1 billion Automotive Transformation Fund (ATF), towards boosting the domestic electric vehicle and lithium-ion battery economy in collaboration between the Advanced Propulsion Centre, the Department for Business Energy and Industrial Strategy, Innovate UK and the Department for International Trade.
New self-charging graphene-oxide ink battery is under development
Australian Advanced Materials has announced it is developing a graphene-oxide-based ink battery that is able to self-charge within minutes.
The cells will be created with a printable ink and designed to generate electricity from humidity in the air or skin surface to self-charge without any manual charging or wired power required. It was said the batteries will be ideally suited for use in Internet of Things (IoT) devices.
Pagination
- Previous page
- Page 19
- Next page