Graphene Flagship Partners at the National Inter-University Consortium for Telecommunications (CNIT) in Italy, IMEC in Belgium and University of Cambridge in UK have designed and tested a graphene-based phase modulator that reportedly outperforms existing silicon-based ones.
Modern optical data and telecommunications employ phase modulators to increase the amount of data relayed and data rate efficiency, i.e. the speed at which information is relayed. Phase modulators traditionally work by grouping several bits of information into fewer symbols, or packets, reducing the overall size, or spectral width. The smaller the spectral width, the higher the data rate efficiency. However, this efficiency is reaching a maximum with silicon based devices, and so a novel solution is needed to bridge the gap between the increase in demand for data and the efficiency in transmitting it.
This hybrid phase modulator can have lower optical losses, reduced energy consumption and error-free bit operation for up to 50 km transmission distance. Furthermore, by optimizing processes and device geometry the radio frequency bandwidth could be raised to match high-end existing modulators.
From the point of view of a customer, continues Romagnoli, you want to watch films and other things on mobile devices, but don’t want to increase what you pay to the operator. So this means you want to increase the performances, bandwidth, but at the same time you want to reduce the cost per data bit. We have to find the technology that is scalable in performance but is, at the same time, cheaper. That is why we believe that graphene is a good candidate…This, as an experiment, is very simple and very inexpensive.
This technology may even hold the key to reducing the carbon footprint of mobile technology as Daniel Neumaier, leader of Division 3, based at Graphene Flagship partner AMO GmbH, explains, Optical communication systems form the backbone of the world wide web, which already now contributes significantly to the global CO2 footprint. This work demonstrates that graphene based optical phase-modulators could become key components of optical data links in order to reduce the energy consumption. The reported modulation efficiency, which is one of the decisive key parameters for the overall energy consumption, is already outperforming conventional silicon based modulators. The next crucial step in order to bring this device towards applications is the wafer scale CMOS integration. This challenge is currently addressed by leading European research centres and companies within the Graphene Flagship.
Professor Andrea C. Ferrari, Science and Technology Officer of the Graphene Flagship, and Chair of its management panel added: "Photonics and Optoelectronic applications have been identified as having great application potential since the very start of the Flagship. This work demonstrates that this technology is competitive with and can surpass the state of the art. This work already underpins a spearhead project targeting a~400Gbit/s data link for 2020, ready to be integrated in the business units of telecom and datacom companies"