Graphene Flagship: Europe's $1 billion graphene initiative - Page 3
Researchers assess health hazards of graphene-enhanced composites
An international research team of the Graphene Flagship project, led by Empa, has conducted a study on the health risks of graphene-containing nanoparticles and found that graphene-based particles released from polymer composites after abrasion induce negligible health effects.
Graphene-related materials (GRMs) are often used to reinforce polymers. In small concentrations of up to five weight percent, GRMs can significantly enhance the strength, electrical conductivity and thermal transport of composites for a variety of applications. However, being a relatively new set of materials, graphene and GRMs need to be carefully assessed in order to identify potential adverse effects prior commercialization.
International collaboration conducts comparison of Raman spectroscopic analysis of CVD-grown graphene
The results of an international comparison of the measurement of graphene, led by NPL, have been released. The work was conducted through the Versailles Project on Advanced Materials and Standards (VAMAS) and in collaboration with institutes from around the world.
The international interlaboratory comparison (ILC) outlined improvements that reduce measurement uncertainty, in some cases by a factor of 15, and which will be the basis for a new international standard which is currently under development within ISO/IEC for Raman spectroscopy. This will aim to become a verified source of data and ultimately provide more accurate and precise measurement standards for the global graphene industry.
2D-EPL offers a chance to test graphene-based sensors on large scale
The 2D Experimental Pilot Line (2D-EPL), that originated from the Graphene Flagship, recently launched its first customizable wafer run.
As one of five multi-project wafer (MPW) runs, this first phase is targeting sensor applications. Companies, universities and research institutes can include their designs as dies on joint wafers, to test their ideas for devices on a larger scale at relatively low costs. The first 2D-EPL MPW run opened in February and the call closes on 30 June 2022. The manufacturing stage of the MPW run will take place between 1 September and 31 October 2022.
INBRAIN Neuroelectronics signs an agreement to develop neurotechnology patented by six public research institutions
INBRAIN Neuroelectronics has signed an agreement for the exploitation and development of three patents and a trade secret, mainly held by the Institute of Microelectronics of Barcelona (IMB-CNM) of the Spanish Council for Scientific Research (CSIC), the Catalan Institute of Nanoscience and Nanotechnology (ICN2), the Institució Catalana de Recerca i Estudis Avançats (ICREA) and the Biomedical Research Centre Network CIBER BBN. The Universitat Autónoma de Barcelona (UAB) and the Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) are also co-owners of the patents. This is a successful process of technology transfer in a public-private collaboration with multiple research institutions.
The company will carry out the development and manufacturing of these technologies within the Institut Català de Nanociència i Nanotecnologia (ICN2) and the Micro and Nanofabrication Clean Room of the Institute of Microelectronics of Barcelona (IMB-CNM) of the CSIC.
Versarien launches Lunar 3D printed lifestyle pods
Versarien, an advanced engineering materials group and provider of graphene-enhanced cement admixture, recently announced the launch of its "Lunar" lifestyle pods. Lunar is Versarien's first 3D printed concrete product made with Cementene, Versarien's graphene-enhanced cement.
The launch involved Neill Ricketts, CEO of Versarien, unveiling a building printed with Cementene, at the Company's production facilities in Longhope, Gloucestershire. Known as Versarien Lunar, this is a milestone project for a 3D-concrete printed product with a graphene additive. The versatile pods can be used as an office, studio, gym, or leisure room. The pod's wall design shows the level of detail, flexibility and precision that can be achieved with 3D-concrete printing.
New international standard for measuring the flatness of graphene
Researchers from RWTH Aachen University and the Graphene Flagship Standardization Committee have pushed through a new IEC standard for assessing the strain uniformity of single-layer graphene using Raman spectroscopy.
Research has shown that the electrical and the structural quality of graphene are intimately connected, and that nanoscale lattice deformations caused by surface corrugations limit the mobility of electrons in graphene. Therefore, controlling the flatness of a graphene sheet is fundamental for the fabrication of high-quality graphene layers for electronic devices and the possibility of measuring this parameter with a simple and fast method is a major technological advantage. Furthermore, the new standard for detecting graphene flatness, pioneered by the Graphene Flagship and published by the International Electrotechnical Commission (IEC), could expedite the manufacture and implementation of single-layer graphene.
Emberion raises €6 million to further its infrared imaging business
Emberion recently raised â¬6 million in funding to further develop their infrared imaging business. Currently, Emberion is one of the leaders in the development of these technologies, enabled by graphene and other layered materials.
Graphene Flagship partner Emberion develops high-performance SWIR sensors for imaging technologies. These devices detect light in both the visible and short-wave infrared (SWIR) wavelengths, enabling new applications in machine vision used in surveillance, autonomous driving, food processing, waste sorting, and more. Emberion also leads Graphene Flagship Spearhead Project GBIRCAM, to design cheaper and more efficient broadband infrared devices.
Grapheal wins CES 2022 Innovation Award
Grapheal has received an award for its graphene-enabled products at CES 2022.
Graphene Flagship Associated Member Grapheal has won the Best in Innovation Award from the Consumer Electronics Show (CES), considered the world’s most influential technology event. We’re thrilled to receive this honor, says Vincent Bochiat, CEO and co-founder of Grapheal. The company develops graphene-enabled technologies for the healthcare and medtech sectors.
New graphene-based neural probes improve detection of epileptic brain signals
Researchers the UK and Spain have demonstrated that tiny graphene neural probes can be used safely to improve our understanding of the causes of epilepsy.
The graphene depth neural probe (gDNP) consists of a millimeter-long linear array of micro-transistors imbedded in a micrometer-thin polymeric flexible substrate. The transistors were developed by a collaboration between The University of Manchester’s Neuromedicine Lab and UCL’s Institute of Neurology along with their Graphene Flagship partners.
FLAG-ERA announces funding for 10 new projects on graphene research and applications
FLAG-ERA has announced the funding of 10 new projects on graphene and related materials, which will become partnering projects of the Graphene Flagship. The projects split between basic and applied research and innovation, covering areas from magnetic memories and photodetectors to novel batteries and neural inter-faces.
The FLAG-ERA initiative establishes links between the EU-funded FET Flagship projects and national and regional funding agencies in Member States. Through different strategies, FLAG-ERA fosters multi-disciplinary collaborations to expand the scope of the Graphene Flagship and the Human Brain Project. Among these was their latest Joint Transnational Call (JTC) 2021, announced earlier this year. JTC 2021 has resolved funding for the 10 projects, seven of which involve partners from widening countries like Bulgaria, Hungary, Slovakia, Slovenia and Turkey.
Pagination
- Previous page
- Page 3
- Next page