Plasmons lose their energy very slowly in graphene
Researchers from IBM are studying how plasmons lose their energy in graphene. It turns out that plasmons lose their energy very slowly in graphene, which is good for photonics and quantum optics applications (the longer the plasmons last, the better).
The IBM researchers are using graphene nanoribbons, dots and nanodisk arrays grown on all sorts of substrates (silicon wafers, diamond-like carbon and SiO2, to name just a few). The researchers are using a new technique (based on Fourier transform IR spectrometer) to measure exact plasmon damping mechanisms and rates. Their most important finding is that the graphene plasmons appear to interact strongly with the vibrations of the silicon dioxide substrate surface atoms on which the graphene is deposited. This leads to so-called energy-dependent hybrid plasmon-phonon modes that disperse and decay very differently compared with those modes where graphene is deposited on non-planar diamond-like substrates.