Graphene for Automotive - Page 23

Sunvault announces far-fetched plans for a graphene fuel cell electric supercar

The newly established Edison Motor Cars, a partnership between Sunvault Energy, the Edison Power Company and Delaware Corporation, has declared a highly ambitious first project: an electric car powered by graphene-based hydrogen fuel cell that will allegedly perform better than a Ferrari.

The car, to be named Edison Electron One, is meant to be unveiled in 2016 and equipped with an electric drive unit at each wheel, providing the vehicle with 1,355 Newton meters of torque (which is almost double that of a Ferrari 488 GTB and one third more than that of the Tesla P85D). The car will also be able to accelerate from zero to 100 km/h in about two seconds and recharge in five minutes.

Read the full story Posted: Sep 02,2015 - 1 comment

Haydale and Cardiff U collaborate to examine component-scale composites using functionalized graphene and CNTs

A collaboration between researchers from Cardiff University and Haydale conducted a study focused on component-scale hierarchical composites using nanocarbons, mainly graphene and CNTs. The team's main aim was to explore techniques for component-scale manufacture of hierarchical composites by liquid infusion.

A plasma process, developed by Haydale, was adopted for controllable functionalization of large batches of nanocarbons (100s of grams) prior to mixing with epoxy resin. A rheological study indicated that filler morphology, functionalization and fill weight all have an effect on epoxy resin viscosity. Using these developed nanocomposite resins, a resin infusion under flexible tooling (RIFT) technique was developed. Resin flow studies informed an optimum setup that facilitated full wet-out of large area UD carbon fibre laminates and the resulting materials showed significant improvements in mechanical properties, demonstrating up to ~50% increase in compression after impact (CAI) properties.

Read the full story Posted: Aug 29,2015

Skeleton Technologies enters the truck market with its graphene-based supercapacitor technology

Skeleton Technologies, the manufacturer of graphene-based supercapacitors, has entered the commercial truck fleet market. The company recently launched a graphene-based device that helps truck drivers start their engines after long periods of inactivity or in cold weather.

Launched under brand name SkelStart ESM, the device delivers a powerful surge of energy to a truck’s engine to make sure it will start even after long periods of inactivity or in cold weather. The firm explained that it also eliminates the need for drivers to leave their trucks idling.

Read the full story Posted: Aug 04,2015

Graphene-enhanced composite to convert engine heat into electrical energy

Scientists from the UK, including ones from Manchester University, used graphene to develop a material that could convert an engine heat into electrical energy to help keep a car running (instead of going to waste) and reduce the need for fuels. It could also have applications in aerospace, manufacturing and other sectors.

Compounds that are able to capture waste heat from engines and other power systems and turn it into electricity are usually heavy, costly, toxic or only operate at high temperatures. The scientists in this study took a material called strontium titanium dioxide and added a small amount of graphene. The resulting composite was able to capture and convert heat into electric current efficiently over a broad temperature range.

Read the full story Posted: Jul 24,2015

Korean scientists create a graphene supercapacitor that equals Li-ion battery energy density and charges quickly

Scientists of the Gwangju Institute of Science and Technology in South Korea developed a graphene supercapacitor that stores as much energy per kilogram as a lithium-ion battery and can be recharged in under four minutes. 

The supercapacitor was created in two stages. First, the scientists exposed powdered graphite to oxygen in a controlled manner to produce graphite oxide, then continues to heat the graphite oxide to 160°C in a vessel which had an internal pressure of a tenth of an atmosphere. The chemical reactions that followed produced carbon dioxide and steam. The increased internal pressure these gases created, pushing against the reduced external pressure in the vessel, broke the graphite into its constituent sheets. Those, after a bit of further treatment to remove surplus oxygen, were then suitable for incorporation into a supercapacitor. 

Read the full story Posted: May 27,2015

German scientists use graphene to improve Hall sensors

Researchers at the German RWTH University and AMO GmbH Aachen fabricated highly sensitive Hall Effect sensors using single layer graphene. Graphene's very high carrier mobility at room temperature and very low carrier densities make it a material that can outperform all currently existing Hall sensor technologies.

The researchers protected the graphene from ambient contamination by encapsulating it with hexagonal boron nitride layers. The consequently fabricated devices showed a voltage and current normalized sensitivity of up to 3 V/VT and 5700 V/AT, respectively. These values are more than one order of magnitude above the values achieved in Silicon-based devices and a factor of two above the values achieved with the best III/V semiconductors Hall sensors in ambient conditions. In addition, these results are far better than the earlier reported graphene Hall sensors on Silicon oxide and Silicon carbide substrates.

Read the full story Posted: May 26,2015

LFP battery cathode improved by using graphene

Researchers at the Harbin Institute of Technology in China and the University of Michigan in the US demonstrated improved LFP battery cathode, augmented by reduced graphene oxide. The scientists used reduced graphene oxide (rGO) in LFP battery cathodes to create a new high surface area 3D composite.

LFP (or LiFePO4) is a kind of Li-Ion rechargeable battery for high power applications, such as electric vehicls, Power Tools and more. LFP cells feature high discharging current, non explosive nature and long cycle life, but its energy density is lower than normal Li-Ion cell. In this study, the researchers created the composite using a nickel foam template that was coated with layers of graphene oxide. The graphene oxide reduced as the LFP nanoparticles were synthesized in a simple technique that allows larger amounts of the LFP to be loaded into the carbon material.

Read the full story Posted: May 15,2015

Sunvault Energy and Edison Power present a 10,000 Farad graphene supercapacitor

Sunvault Energy, along with Edison Power, announced the creation of the world's largest 10,000 Farad Graphene Supercapacitor. The companies declared that this development is the most significant breakthrough in the development of Graphene Supercapacitors to date.

Sunvault's CEO says that the technology can be defined as a hybrid, bringing the power density associated with a battery together with the high impact fast charging known to capacitors. He claims that at 10,000 Farads, a Graphene Supercapacitor is powerful enough to power up a Semi Truck while being the size of a paperback novel. the companies are focused on developing their technology and shrinking the size of the unit in the near future.

Read the full story Posted: May 07,2015

Charged defects in graphene can increase its energy storage abilities

Scientists at the University of California, San Diego discovered a method to increase the amount of electric charge that can be stored in graphene, in a research that may provide a better understanding of how to improve the energy storage ability of capacitors for potential applications in cars, wind turbines, and solar power.

The team attempted to introduce more charge into a capacitor electrode using graphene as a model material for their tests. The idea is that increased charge leads to increased capacitance, which translates to increased energy storage.

Read the full story Posted: Apr 22,2015

U.S company wants to 3D print customized graphene-enhanced cars

U.S-based Local Motors plans to 3D print vehicles within 12 hours, reinforcing extruded printed material with graphene. The company reports significant progress in its additive manufacturing technology since it unveiled its Strati vehicle (pictured) last September.

The Strati's body was printed in 44 hours, assembled and driven at the International Manufacturing Technology Show in Chicago last year. It used ABS plastic reinforced with carbon fibre, and contained 40 printed parts. Local Motors announced plans in January this year to open two microfactories in the US, and plans 50 such factories worldwide over the next five years.

Read the full story Posted: Mar 27,2015