Scientists at Rice University are using machine-learning techniques to fine-tune the process of synthesizing graphene from waste through flash Joule heating. The researchers describe in their new work how machine-learning models that adapt to variables and show them how to optimize procedures are helping them push the technique forward.
Machine learning is fine-tuning Rice University’s flash Joule heating method for making graphene from a variety of carbon sources, including waste materials. Credit: Jacob Beckham, from: Phys.org
The process, discovered by the Rice lab of chemist James Tour, has expanded beyond making graphene from various carbon sources to extracting other materials like metals from urban waste, with the promise of more environmentally friendly recycling to come. The technique is the same: blasting a jolt of high energy through the source material to eliminate all but the desired product. However, the details for flashing each feedstock are different.