Graphene-Info: the graphene experts

Graphene is the strongest, thinnest and most conductive material known to man, that can unlock countless applications in electronics, energy, composite materials, medicine, aerospace and more. Graphene-Info, established in 2009, is the world's leading graphene industry portal - offering a web publication, newsletter, market insights, market reports, and industry connections.

Novel plasma-based method increases graphene production by more than 22%

A research team from the University of Córdoba (UCO) has developed a new prototype that could lead opens the door to the large-scale production of graphene. This new method, which has already been registered for evaluation as a patent and is based on a previous patent by the same team, increases the production of graphene by more than 22%, with the process maintaining the high quality that characterizes graphene synthesized with this technology.

The work is based on plasma technology, a partially ionized gas often referred to as the fourth state of matter. One of its great advantages, highlighted the study's lead author, Francisco Javier Morales, is that "it is a highly energetic medium that is capable of breaking down organic molecules very easily." Specifically, the team used this plasma torch to break down ethanol and rearrange the molecule's carbon atoms, resulting in the creation of graphene.

Read the full story Posted: Oct 12,2024

Researchers design a graphene-based 'electronic tongue' that detects liquid differences, spoilage, and food safety with AI accuracy

Researchers from Penn State University and NASA Goddard Space Flight Center recently developed an 'electronic tongue' based on a graphene-based ion-sensitive field-effect transistor, capable of identifying differences in similar liquids, such as milk with varying water content; diverse products, including soda types and coffee blends; signs of spoilage in fruit juices; and instances of food safety concerns. The team also found that results were even more accurate when artificial intelligence (AI) used its own assessment parameters to interpret the data generated by the electronic tongue.

Graphene ISFET chip mounted on a printed circuit board (PCB). Image from: Nature

The sensor and AI can broadly detect and classify various substances while collectively assessing their respective quality, authenticity and freshness. This assessment has also provided the researchers with a view into how AI makes decisions, which could lead to better AI development and applications, they said.

Read the full story Posted: Oct 11,2024

New spinout called 2D Nano to produce 2D materials sustainably

Imperial College London has spun out a company called 2D Nano, led by Dr. Andrius Patapas, Professor Omar Matar, Professor Camille Petit (Department of Chemical Engineering), and Dr. Jason Stafford (Department of Mechanical Engineering, University of Birmingham), to pioneer the production of advanced materials like graphene, boron nitride, molybdenum disulfide, and more. 

Recently, 2D Nano reportedly secured £2 million in funding from private investors, allowing the Company to scale up production of 2D materials to several tonnes per year. Their internal research and development suggests this can lead to the manufacturing of graphene-enhanced products in excess of 100,000 t/y. The Company is particularly focused on deploying its materials in high-demand sectors such as concrete, coatings, and energy storage, where significant sustainability benefits can be realized. 

Read the full story Posted: Oct 10,2024

Researchers investigate the ultrafast opto-electronic and thermal tuning of nonlinear optics in graphene

An international group of scientists, including ones from the UK's University of Bath, Friedrich Schiller University Jena in Germany and the University of Pisa in Italy, recently set out to investigate the ultrafast opto-electronic and thermal tuning of nonlinear optics in graphene.

Opto-electronic modulation of third harmonic generation in a graphene field-effect transistor. The illustration includes a sketch and a microscopic optical image of the device. Image credit: University of Bath

Nonlinear optics explores how powerful light (e.g. lasers) interacts with materials, resulting in the output light changing color (i.e. frequency) or behaving differently based on the intensity of the incoming light. This field is important for developing advanced technologies such as high-speed communication systems and laser-based applications. Nonlinear optical phenomena enable the manipulation of light in novel ways, leading to breakthroughs in fields like telecommunications, medical imaging, and quantum computing. Graphene's exceptional electronic properties, related to relativistic-like Dirac electrons and strong light-matter interactions, make it promising for nonlinear optical applications, including ultrafast photonics, optical modulators, saturable absorbers in ultrafast lasers, and quantum optics.

Read the full story Posted: Oct 09,2024

Researchers design graphene-based RF NEMS switches with excellent performance

Researchers from the Taiyuan Institute of Technology have introduced a novel graphene RF NEMS capacitive switch and conducted an extensive analysis of its RF performance within the UWB frequency range of DC ~ 140 GHz. 

Schematic representation of the proposed graphene RF NEMS capacitive switch: (a) a 3D isometric view; (b) a top view. Image credit: Scientific Reports

The monolayer graphene RF NEMS switch is characterized by its low pull-in voltage, rapid switching time, and superior RF performance, contrasting with the comparatively inferior performance of multilayer graphene RF NEMS switches. 

Read the full story Posted: Oct 08,2024

DUER launches graphene-enhanced jacket

DUER, an innovative denim company, has launched its new Performance Flannel that is enhanced with graphene. The fabric is said to regulate body temperature without feeling heavy, fight static and stay fresh longer. 

“Graphene caught our attention as a Nobel prize-winning nano-fiber with exceptional performance properties that don’t impact a fabric’s weight, breathability, or soft feel,” said Gary Lennett, CEO of DUER. “We’ve integrated graphene into our Performance Flannel to provide enhanced thermal regulation— keeping you warm when it’s cold, and cool when it’s hot. Added to that, it fights static and keeps clothing fresh longer, marking a significant step in the future of textiles.”

Read the full story Posted: Oct 07,2024