Researchers from Berkeley Lab’s Materials Sciences Division and the University of California, Berkeley, in collaboration with scientists at ISPC-CNR and Tsukuba's National Institute for Materials Science, have determined that interactions between electrons give rise to the effects observed when graphene is doped with electrons versus holes.
A better understanding of this electronhole asymmetry could lead to new ways of generating exotic material phases, including unconventional superconductivity.
Electronhole asymmetry is one of the key recurring features in the phase diagrams of many quantum materials, including cuprate superconductors, twisted graphene sheets, and other heterostructures whose slightly mismatched lattices produce moiré patterns. Such materials all exhibit strong electronelectron interactions and unconventional superconductivity.
Setting out to study this fundamental question leads to single-layer graphene, the parent material for most moiré systems.
Electronhole asymmetry in graphene has mainly been attributed to extrinsic sources such as impurities and strain, as opposed to intrinsic effects such as particle interactions (i.e., electron correlations). In this work, the research team used angle-resolved photoemission spectroscopy (ARPES) to determine that, contrary to earlier assumptions, intrinsic electronic correlations are in fact the primary driver of graphene’s electronhole asymmetry.
Addressing the origin of electronhole asymmetry in graphene today requires a probe that has complete access to the self-energy of quasiparticles in the material (i.e., the effects of a particle’s interaction with its environment) as a function of energy, momentum, and doping. ARPES can access the full energy- and momentum-dependent band structure, but in the past it has typically required methods of doping that fundamentally alter the properties of the sample.
The recent introduction of electrostatically controlled doping into ARPES experiments at ALS Beamlines 4.0.3 and 7.0.2 enables studies of the doping-dependent self-energy while leaving the samples in pristine condition. In this methodology, a positive (or negative) voltage established between a graphite gate and the graphene sample results in the addition (or subtraction) of electrons, altering the balance of electrons and holes in the sample while changes in the band structure are probed.
The high-resolution gated ARPES results revealed striking asymmetries in features of the band dispersion (energy vs momentum data) and associated calculations of quasiparticle lifetime. Detailed analysis of the results allowed the researchers to rule out sources of asymmetry inconsistent with the data.
These eliminated mechanisms include inherent band-structure differences enhanced by strain (induced, for example, from alignment to a substrate with a different lattice constant) and the presence of charged impurities. Based on this line of reasoning, the researchers concluded that the primary driver of the observed electronhole asymmetry is strong electronic correlations.
These findings open the intriguing possibility that electronelectron interactions might also be responsible for the asymmetries found in twisted bilayer graphene, similar correlated two-dimensional moiré systems, and high-temperature cuprate superconductors.
Given that the moiré strain can be leveraged to enhance the strength of correlations in two-dimensional heterostructures, the researchers speculate that breaking electronhole asymmetry via moiré-enhanced correlations can be an exciting alternative pathway to realize exotic quantum phases in twisted two-dimensional heterostructures.