Graphene, despite its excellent mechanical, electronic and optical properties, is traditionally not deemed suitable for magnetic applications. Swiss Federal Laboratories for Materials Science and Technology (EMPA) Researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronics applications.
Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties. Together with colleagues from the Technical University in Dresden, Aalto University in Finland, Max Planck Institute for Polymer Research in Mainz and University of Bern, Empa researchers have succeeded in building a nanographene with magnetic properties that could be a decisive component for spin-based electronics functioning at room temperature.
"However, in certain structures made of hexagons, one can never draw alternating single and double bond patterns that satisfy the bonding requirements of every carbon atom. As a consequence, in such structures, one or more electrons are forced to remain unpaired and cannot form a bond," explains Shantanu Mishra, who is researching novel nanographenes in the Empa nanotech surfaces laboratory headed by Roman Fasel. This phenomenon of involuntary unpairing of electrons is called "topological frustration."
But what does this have to do with magnetism? The answer lies in the "spins" of the electrons. The rotation of an electron around its own axis causes a tiny magnetic field, a magnetic moment. If, as usual, there are two electrons with opposite spins in an orbital of an atom, these magnetic fields cancel each other. If, however, an electron is alone in its orbital, the magnetic moment remains - and a measurable magnetic field results.
In order to be able to use the spin of the electrons as circuit elements, one more step is needed. One answer could be a structure that looks like a bow tie under a scanning tunneling microscope.
Back in the 1970s, the Czech chemist Erich Clar, a distinguished expert in the field of nanographene chemistry, predicted a bow tie-like structure known as "Clar's goblet." It consists of two symmetrical halves and is constructed in such a way that one electron in each of the halves must remain topologically frustrated. However, since the two electrons are connected via the structure, they are antiferromagnetically coupled - that is, their spins necessarily orient in opposite directions.
In its antiferromagnetic state, Clar's goblet could act as a "NOT" logic gate: if the direction of the spin at the input is reversed, the output spin must also be forced to rotate.
However, it is also possible to bring the structure into a ferromagnetic state, where both spins orient along the same direction. To do this, the structure must be excited with a certain energy, the so-called exchange coupling energy, so that one of the electrons reverses its spin.
In order for the gate to remain stable in its antiferromagnetic state, however, it must not spontaneously switch to the ferromagnetic state. For this to be possible, the exchange coupling energy must be higher than the energy dissipation when the gate is operated at room temperature. This is a central prerequisite for ensuring that a future spintronic circuit based on nanographenes can function faultlessly at room temperature.
So far, however, room-temperature stable magnetic carbon nanostructures have only been theoretical constructs. For the first time, researchers have succeeded in producing such a structure in practice, and showed that the theory does correspond to reality. "Realizing the structure is demanding, since Clar's goblet is highly reactive, and the synthesis is complex," explains Mishra. Starting from a precursor molecule, the researchers were able to realize Clar's goblet in ultrahigh vacuum on a gold surface, and experimentally demonstrate that the molecule has exactly the predicted properties.
Importantly, they were able to show that the exchange coupling energy in Clar's goblet is relatively high at 23 meV, implying that spin-based logic operations could therefore be stable at room temperature. "This is a small but important step toward spintronics," says Roman Fasel.