Infinity Turbine, developer of sustainable energy storage solutions, has unveiled an approach to electrode fabrication that combines fiber laser heat treating, 3D additive manufacturing, and laser-induced carbonization. This synergistic technology enables the direct transformation of carbon-rich materials like sugar and wood fibers (including bamboo) into hard carbon or graphene-like structures. The resulting 3D-printed electrodes are set to revolutionize the manufacturing of Salgenx saltwater flow batteries, gas processing, and electrocatalyst applications.
Salgenx is developing saltwater flow batteries as a solution for safe, environmentally friendly grid-scale energy storage. With the introduction of 3D-printed carbon electrodes, Infinity Turbine can enhance the battery’s efficiency by providing a high-conductivity, high-surface-area electrode structure. The combination of laser-induced graphene and tailored 3D-printed geometries reportedly allows for faster ion exchange, improved energy density, and longer battery life, all while using sustainable, carbon-rich materials. The concept of a 3D printed electrode reduces manufacturing time and complexity, resulting in more efficient electrode production with just-in-time (JIT) technology integration and decreased inventory costs.