Researchers use graphene electrodes to design neural implant capable of reading brain activity

University of California San Diego researchers have developed a neural implant capable of reading brain activity that could advance research into creating a brain-computer interface (BCI) without being overly invasive.

The new implant consists of a thin transparent strip made of a polymer with several graphene electrodes 20 micrometers in diameter, each of which is connected to a circuit board via tiny wires. The strip sits on the surface of the brain allowing it to detect neural activity consisting of electrical activity and calcium activity. Unlike previous methods, the chip allows scientists to conduct longer experiments without the need to have a subject fixed in place under a microscope.

Read the full story Posted: Jan 25,2024

Researchers design graphene biosensor that uses sound waves for chemical fingerprinting of ultrathin biolayers

Universidad Politécnica de Madrid researchers have reported the development of an electrically tunable graphene-based biosensor that leverages sound waves to provide unprecedented infrared sensitivity and specificity at the single layer limit. By precisely matching the tunable graphene plasmon frequency to target molecular vibrations, even faint spectral fingerprints emerge clearly.



This acoustically activated approach enables precise in situ study of angstrom-scale films, unlocking new infrared applications across chemistry, biology and medicine.

Read the full story Posted: Jan 23,2024

Researchers develop novel graphene-based implantable neurotechnology

A new study, led by the Catalan Institute of Nanoscience and Nanotechnology (ICN2) along with the Universitat Autònoma de Barcelona (UAB) and other international partners like the University of Manchester (under the European Graphene Flagship project), presents EGNITE (Engineered Graphene for Neural Interfaces) - a novel class of flexible, high-resolution, high-precision graphene-based implantable neurotechnology with the potential for a transformative impact in neuroscience and medical applications. 

This work aims to deliver an innovative technology to the growing field of neuroelectronics and brain-computer interfaces. EGNITE builds on the experience of its inventors in fabrication and medical translation of carbon nanomaterials. This innovative technology based on nanoporous graphene integrates fabrication processes standard in the semiconductor industry to assemble graphene microelectrodes of a mere 25 µm in diameter. The graphene microelectrodes exhibit low impedance and high charge injection, essential attributes for flexible and efficient neural interfaces.

Read the full story Posted: Jan 15,2024

Researchers design graphene quantum dots for cancer treatment

Researchers at China's Hunan University, Chinese Academy of Sciences and the University of Washington in the U.S have developed a metal-free nanozyme based on graphene quantum dots (GQDs) for highly efficient tumor chemodynamic therapy (CDT).

GQDs have potential as a cost-effective means of addressing the toxicity concerns associated with metal-based nanozymes in tumor CDT. However, the limited catalytic activity of GQDs has posed significant challenges for their clinical application, particularly under challenging catalytic conditions. "The obtained GQDs, which are made from red blood cell membranes, are highly effective in treating tumors with few side effects," said Liu Hongji, a member of the research team. "One of the advantages is that they are metal-free. In addition, they function as excellent peroxidase-like biocatalysts."

Read the full story Posted: Jan 10,2024

HydroGraph’s Graphene selected by Hawkeye Bio for use in its early-stage lung cancer detection biosensor

HydroGraph Clean Power has announced that its flagship graphene product, FGA-1, has been successfully trialed in Hawkeye Bio’s biomedical sensor aimed at the early detection of lung cancer. Hawkeye Bio is a clinical stage medical technology company focused on the early detection of cancer.

HydroGraph’s graphene was selected by Hawkeye Bio based on the purity and consistency of its graphene. Headquartered in Toronto, HydroGraph’s manufacturing facility is located in Manhattan, Kan.

Read the full story Posted: Jan 03,2024

Zentek launches Triera Biosciences

Canada-based Zentek has announced the launch of Triera Biosciences as its wholly owned subsidiary for its aptamer platform technology. This subsidiary now owns the exclusive, global licensing rights for all aptamer-based technology from the collaboration with McMaster University.

The Company is repotedly taking this action following the strong, consistent pre-clinical results of its universal aptamer as a treatment against the SARS-CoV-2 virus including the latest Omicron XBB 1.5 variant and will continue to build upon its previous work on a rapid detection platform within the new subsidiary. Triera will offer a pure play in the biotech space when operated as an independent business and be more accessible to potential pharmaceutical partners, funders, and other interested parties.

Read the full story Posted: Dec 15,2023

Researchers develop DNA aptamer-attached portable graphene biosensor for the detection of degenerative brain diseases

An international team of researchers, including scientists from University of California San Diego, Chinese Academy of Sciences, University of Texas Medical Branch and University of Illinois Urbana-Champaign, has developed a handheld, non-invasive graphene-based device that can detect biomarkers for Alzheimer’s and Parkinson’s Diseases. The biosensor can also transmit the results wirelessly to a laptop or smartphone.

The biosensor consists of a chip with a highly sensitive transistor, made of a graphene layer that is a single atom thick and three electrodes–source and drain electrodes, connected to the positive and negative poles of a battery, to flow electric current, and a gate electrode to control the amount of current flow. Image credit: UCSD

The team tested the device on in vitro samples from patients. The tests reportedly showed the device is as accurate as other state-of-the-art devices. Ultimately, researchers plan to test saliva and urine samples with the biosensor. The device could be modified to detect biomarkers for other conditions as well.

Read the full story Posted: Nov 16,2023

IIT Guwahati researchers advance the use of modified graphene oxide in biomedical applications

Researchers at the Indian Institute of Technology (IIT) Guwahati have developed cost-effective experiments for modifying graphene oxide (GO) that can be used by other academic institutions to train personnel needed for cutting-edge projects in semiconductors, nanoelectronics, healthcare and quantum technologies.

A team led by Rajiv K Kar, assistant professor, at the Jyoti and Bhupat Mehta School of Health Sciences and Technology in IIT-Guwahati, made these discoveries regarding the use of modified graphene oxide for biomedical applications, according to a recent announcement.

Read the full story Posted: Nov 08,2023

Archer Materials demonstrates multiplexing readout for its Biochip gFET

Archer Materials, a semiconductor company advancing the quantum computing and medical diagnostics industries, has demonstrated multiplexing readout for its advanced Biochip graphene field effect transistor (“gFET”) device.

Archer confirmed single-device multiplexing using four advanced gFETs as sensors, which were integrated into the Archer advanced Biochip platform. This is significant as Archer intends to apply its multiplexing capability in the Biochip to test for multiple diseases on a single chip at once.

Read the full story Posted: Nov 03,2023

A new Horizon Europe project called 2D-BioPAD is launched

2D-BioPAD is the name of a new Horizon Europe project that was recently launched. With a nearly €6 million budget, 2D-BioPAD will develop a diagnostic system for early Alzheimer's disease detection. This Horizon Europe Research and Innovation Action funded by the European Union, officially commenced on October 2023 and will go on for 48 months.

2D-BioPAD is developing a fast, reliable, cost-effective and digitally enabled point-of-care in vitro diagnostic system for early Alzheimer's disease detection. The 2D-BioPAD system will make use of cutting-edge 2D materials (i.e., graphene), nanomaterials and aptamers, to enhance biocompatibility, sensitivity and specificity for the simultaneous detection of up to five Alzheimer’s biomarkers in blood. The device will be accompanied by a user-friendly mobile app that will give healthcare professionals real-time access to quantified results in primary healthcare settings. Along the way, artificial intelligence will be used to optimize the design and implementation of the 2D-BioPAD system.

Read the full story Posted: Oct 20,2023