Medicine - Page 4

Archer Materials demonstrates multiplexing readout for its Biochip gFET

Archer Materials, a semiconductor company advancing the quantum computing and medical diagnostics industries, has demonstrated multiplexing readout for its advanced Biochip graphene field effect transistor (“gFET”) device.

Archer confirmed single-device multiplexing using four advanced gFETs as sensors, which were integrated into the Archer advanced Biochip platform. This is significant as Archer intends to apply its multiplexing capability in the Biochip to test for multiple diseases on a single chip at once.

Read the full story Posted: Nov 03,2023

A new Horizon Europe project called 2D-BioPAD is launched

2D-BioPAD is the name of a new Horizon Europe project that was recently launched. With a nearly €6 million budget, 2D-BioPAD will develop a diagnostic system for early Alzheimer's disease detection. This Horizon Europe Research and Innovation Action funded by the European Union, officially commenced on October 2023 and will go on for 48 months.

2D-BioPAD is developing a fast, reliable, cost-effective and digitally enabled point-of-care in vitro diagnostic system for early Alzheimer's disease detection. The 2D-BioPAD system will make use of cutting-edge 2D materials (i.e., graphene), nanomaterials and aptamers, to enhance biocompatibility, sensitivity and specificity for the simultaneous detection of up to five Alzheimer’s biomarkers in blood. The device will be accompanied by a user-friendly mobile app that will give healthcare professionals real-time access to quantified results in primary healthcare settings. Along the way, artificial intelligence will be used to optimize the design and implementation of the 2D-BioPAD system.

Read the full story Posted: Oct 20,2023

Researchers develop graphene-based wearable patch for continuous analysis of biomarkers in sweat

A team of researchers at Penn State has reported the design and fabrication of a long-term stable and highly sensitive flexible electrochemical sensor based on nanocomposite-modified porous graphene by facile laser treatment for detecting biomarkers such as glucose in sweat. 

The laser-reduced and patterned stable conductive nanocomposite on the porous graphene electrode provides the resulting glucose sensor with an excellent sensitivity of 1317.69 µA mm−1 cm−2 and an ultra-low limit of detection of 0.079 µm. The sensor can also detect pH and exhibit extraordinary stability to maintain more than 91% sensitivity over 21 days in ambient conditions. Taken together with a temperature sensor based on the same material system, the dual glucose and pH sensor integrated with a flexible microfluidic sweat sampling network further results in accurate continuous on-body glucose detection calibrated by the simultaneously measured pH and temperature. 

Read the full story Posted: Oct 01,2023

Researchers report GO-based composite fibers as artificial muscles

Researchers at the University of Pennsylvania have fabricated meter-long composite fibers combining graphene oxide (GO) nanosheets with flexible, conductive polymers that can achieve mechanical strength, toughness, and actuation that surpasses biological muscles.

The team wet-spin a mixture of GO nanosheets and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) into a composite fiber in which the flexible, conductive polymer is embedded in between aligned, closely-packed nanosheets. The addition of a depleting agent, polyethylene glycol (PEG), improves toughness and elasticity, while chemical reduction of GO to rGO increases electrical conductivity. Finally, the composite fibers are plied with nylon yarns to create a hierarchical composite actuator with capabilities better than typical biological muscles (75 J/kg work capacity and 924 W/kg power density).

Read the full story Posted: Sep 26,2023

INBRAIN Neuroelectronics announces FDA Breakthrough Device Designation for Its Graphene-Based Intelligent Network Modulation Platform

INBRAIN Neuroelectronics, a health-tech company dedicated to developing intelligent graphene-neural platform, has announced that its Intelligent Network Modulation System has been granted Breakthrough Device Designation (BDD) from the U.S. Food & Drug Administration (FDA) as an adjunctive therapy for treating Parkinson’s disease.

The INBRAIN system uses graphene, whose electrical and mechanical properties make it ideal for neurotechnology innovation. INBRAIN’s neural platform technology enables ultra-high signal resolution and uses machine learning software that decodes therapy-specific biomarkers to deliver highly focused, adaptive neuroelectronic therapy that re-balances pathological neural networks.

Read the full story Posted: Sep 20,2023

Researchers design scalable graphene sensor array for real-time toxins monitoring in flowing water

A team of researchers, led by the University of Wisconsin-Milwaukee, recently developed a path to mass-manufacture high-performance graphene sensors that can detect heavy metals and bacteria in flowing tap water. This advance could bring down the cost of such sensors to just US $1 each, allowing people to test their drinking water for toxins at home.

The sensors have to be extraordinarily sensitive to catch the minute concentrations of toxins that can cause harm. For example, the U.S. Food and Drug Administration states that bottled water must have a lead concentration of no more than 5 parts per billion. Today, detecting parts-per-billion or even parts-per-trillion concentrations of heavy metals, bacteria, and other toxins is only possible by analyzing water samples in the laboratory, says Junhong Chen, a professor of molecular engineering at the University of Chicago and the lead water strategist at Argonne National Laboratory. But his group has developed a sensor with a graphene field-effect transistor (FET) that can detect toxins at those low levels within seconds.

Read the full story Posted: Aug 29,2023

MINIGRAPH project aims to pave the way for a new generation of graphene-based adaptive neuroelectronic therapies

The MINIGRAPH project (Minimally Invasive Neuromodulation Implant and implantation procedure based on ground-breaking GRAPHene technology for treating brain disorders) aims to pave the way for a new generation of adaptive neuroelectronic therapies, resolving the most important limitations of current technology. The project revolves around the development of a new generation of graphene-based brain implants.

The project started in October 2022 and will go on for 36 months. It is a HORIZON-EIC project, with an estimated cost of €3,928,402.50. Among its members are ICN2, IMEC, Fraunhofer, INBRAIN Neuroelectronics, MSRL and more. Recently, Scientists from the Czech Advanced Technologies and Research Institute – CATRIN at Palacký University also announced that they will participate in the project.

Read the full story Posted: Aug 16,2023

Researchers design rGO-based nerve gas sensor using human scent receptors

Researchers from Seoul National University and Samsung Electronics have developed a sensitive and selective nerve gas sensor using human scent receptors. It reliably detected a substitute for deadly sarin gas in simulated tests.

Nerve gases are often very potent, requiring highly sensitive sensors to detect them quickly and accurately. One method of boosting sensitivity combines human scent receptors with nanomaterials such as reduced graphene oxide to create a "bioelectronic nose." But since these nerve gases are still highly dangerous even in laboratory settings, many scientists rely on safer, substitute molecules instead. In the case of the sarin or soman nerve agents, dimethyl methylphosphonate (DMMP) is a common replacement. Previously, the receptor protein hOR2T7 has been used to detect DMMP, but it could only do so when the nerve agent substitute was in a liquid form, rather than as a gas. So, the research team wanted to design a "nose" of their own that was both highly sensitive and selective for the gaseous form, using nanodiscs containing the hOR2T7 receptor.

Read the full story Posted: Aug 12,2023

Researchers achieve multiomics biosignal detection in real-time via an electronic biosensor

Scientists at DARPA, Siemens, US ARMY, Georgia Tech Research Institute, and Paragraf - through recently acquired Cardea Bio, now Paragraf San Diego - presented novel multiomics capabilities, by detection of both protein and RNA biosignals simultaneously on a single graphene-based biosensor.

Dr. Kiana Aran, Chief Innovation Officer at Paragraf San Diego, stated: “Having a single technology platform that can detect both protein and DNA/RNA biosignal analytes at the same time on a small-scale detection device, is a major technological advancement. While it initially will impact when and where we can detect viral infections, with time it will also work for other types of diseases. This will enable new, better, and way faster diagnoses for any types of diseases or biothreats.”

Read the full story Posted: Aug 06,2023

Researchers use graphene transistors to design novel biomimetic sensing system

Researchers from Shanghai Jiao Tong University, Chinese Academy of Fishery Sciences,  BOKU-University of Natural Resources and Life Sciences, University of Oslo and Oslo University Hospital, MIT, 2bind and Avalon GloboCare have designed a novel sensor that could detect the same molecules that naturally occurring cell receptors can identify.

The researchers created a prototype sensor that can detect an immune molecule called CXCL12, down to tens or hundreds of parts per billion. This is an important first step towards developing a system that could be used to perform routine screens for hard-to-diagnose cancers or metastatic tumors, or as a highly biomimetic electronic “nose,” the researchers say.

Read the full story Posted: Jul 28,2023