Electronics

Paragraf and University of Cambridge awarded Innovate UK grant for graphene memory device project

Paragraf, the UK-based company pioneering the mass production of graphene-based electronics with standard semiconductor processes, has been awarded a grant of £419,419 (around USD$520,000) from Innovate UK for the purpose of producing a proof-of-concept prototype of a novel semiconductor memory technology using a new class of ferroelectric materials complemented with graphene on a silicon platform.

The joint grant will also see Prof. Judith Driscoll’s research group at the University of Cambridge’s Department of Materials Science and Metallurgy receive £299,198 to develop processes for depositing ferroelectric materials on top of Paragraf’s transfer-free graphene in order to produce novel memory devices, including a graphene-ferroelectric field effect transistor (G-FeFET). This is expected to lead to power savings of an order of magnitude relative to existing memory device technology, which is key to saving power in data centres and consumer devices to support the AI revolution.

Read the full story Posted: Feb 10,2025

2D-EPL project reports results of two multi-project wafer runs

Researchers from AMO, Graphenea and RWTH Aachen University have, as part of the European experimental pilot line for electronic and optoelectronic devices based on graphene and related two-dimensional (2D) materials, namely the Experimental Pilot Line (2D-EPL) project, reported the results obtained during the first and third multi-project wafer (MPW) runs completed at the end of 2022 (MPW run 1) and 2023 (MPW run 3). 

The Experimental Pilot Line (2D-EPL) project, that aims to advance the widespread commercialization of electronic devices based on graphene, published the new report that summarizes the results of two multi-project wafer (MPW) runs, utilizing electrical and spectroscopic characterization to demonstrate the high quality of production in the 2D-EPL. MPW run 1 was intended mainly for graphene-based sensors, in particular chemical and biosensors, while MPW run 3 focused on graphene electronics. 

Read the full story Posted: Feb 09,2025

University of Birmingham and Paragraf jointly receive $4.2 million to scale graphene for quantum technologies

The University of Birmingham and Paragraf, a UK-based company focused on graphene electronics, are eorking together to scale graphene production and explore its application in quantum computing. Supported by two awards totaling £3.4 million (approximately $4.2 million)–£1.4 million from Innovate UK and £2m UKRI Future Leaders Fellowship–the partnership intends to address key challenges in graphene manufacturing as well as explore its potential as a material for quantum technologies.

Graphene magnetic sensors, a focal point of this collaboration, operate with high precision at ultra-low temperatures. Such sensors could support quantum computing through precise magnetic shielding and control required for qubit stability and operation. But, the cryogenic behavior of practical graphene devices requires further systematic exploration before such an innovation could exist.

Read the full story Posted: Jan 11,2025

New junction method helps control graphene's properties, could open new paths for next-gen electronics

Researchers at Korea's Pohang University of Science and Technology and Japan's National Institute for Materials Science have developed a way to control the properties of graphene by combining superconductors and graphene. 

Professor Lee Gil-ho of Pohang University of Science and Technology (POSTECH) and researchers from the Research Institute, in collaboration with Kenji Watanabe and Takashi Taniguchi from the National Institute for Materials Science (NIMS) in Japan, noted they have successfully improved the junction characteristics between graphene and superconducting electrodes. 

Read the full story Posted: Dec 31,2024

Researchers report new growth-directed graphene stacking domains that could advance next-gen electronics and quantum technologies

Graphene’ s quantum properties, such as superconductivity and other unique quantum behaviors, are known to arise when graphene atomic layers are stacked and twisted with precision to produce “ABC stacking domains.” Historically, achieving ABC stacking domains required exfoliating graphene and manually twisting and aligning layers with exact orientations—an intricate process that is difficult to scale for industrial applications.

Recently, researchers at NYU Tandon School of Engineering and Charles University in Prague, led by Elisa Riedo and Herman F. Mark, uncovered a new phenomenon in graphene research, observing growth-induced self-organized ABA and ABC stacking domains that could promote the development of advanced quantum technologies. The findings of their study demonstrate how specific stacking arrangements in three-layer epitaxial graphene systems emerge naturally — eliminating the need for complex, non-scalable techniques traditionally used in graphene twisting fabrication.

Read the full story Posted: Dec 12,2024

Destination 2D brings graphene to mainstream CMOS

 A semiconductor startup called Destination 2D has announced it has successfully achieved wafer-scale synthesis of high-quality graphene within CMOS-compatible process conditions. In doing so, the company is enabling the use of graphene as a 2D material in mainstream semiconductor products through its 300mm scale graphene synthesis equipment – the CoolC GT300™.

The issues facing the semiconductor industry as they relate to interconnects are profoundly impacted by the ever-shrinking dimensions of regular process technology. The standard interconnect material, copper, has been used for the past 30 years and is now reaching commercial end-of-life due to Moore’s Law and electron migration that renders copper extremely problematic in low geometry fabrication. At sub-15 nm interconnect dimensions, the resistivity of copper increases rapidly – causing significant degradation in both circuit and system-level performance, power, and dramatically impacting all reliability metrics required by modern semiconductor designs in products such as GPUs, CPUs and others.

Read the full story Posted: Dec 07,2024

Researchers use graphene in novel technique for self-assembling electronics

Researchers from North Carolina State University and Iowa State University have demonstrated a new technique for self-assembling electronic devices. The proof-of-concept work was used to create diodes and transistors, and could pave the way for self-assembling more complex electronic devices without relying on existing computer chip manufacturing techniques.

D-Met fabricated patterns produce components for potential use in microelectromechanical systems (MEMS). Image credit: Julia Chang and NCSU.

“Existing chip manufacturing techniques involve many steps and rely on extremely complex technologies, making the process costly and time consuming,” says Martin Thuo, corresponding author of a paper on the work and a professor of materials science and engineering at North Carolina State University. “Our self-assembling approach is significantly faster and less expensive. We’ve also demonstrated that we can use the process to tune the bandgap for semiconductor materials and to make the materials responsive to light – meaning this technique can be used to create optoelectronic devices. What’s more, current manufacturing techniques have low yield, meaning they produce a relatively large number of faulty chips that can’t be used. Our approach is high yield – meaning you get more consistent production of arrays and less waste.”

Read the full story Posted: Dec 04,2024

Adisyn acquires 2D Generation to bring graphene into advanced semiconductors

Israeli-based 2D Generation (2DG), which specializes in graphene-based solutions for semiconductors, has been acquired by ASX-listed Adisyn (ASX:AI1), a provider of tech services for SMEs in the Australian defense sector that has expanded its focus to the semiconductor industry through this acquisition.

 

Adisyn is also one of the founders of Connecting Chips European Union Joint Undertaking, a collaboration that includes industry leaders like NVIDIA, Valeo, and Applied Materials. This acquisition not only brings Adisyn cutting-edge technology, but potentially opens the door for the company to enter the semiconductor space.

Read the full story Posted: Nov 28,2024

Inkjet printed silver/graphene flexible composite electrodes enable high-performance supercapacitors

Researchers at the Technical University of Liberec (Czech Republic) and Lodz University of Technology (Poland) have developed a silver/graphene flexible composite electrode using inkjet printing technology for high-performance supercapacitors. 

The scientists chose rGO as the primary material for the electrode active layer. The rGO active layer was in-situ printed and reduced on the polypropylene non-woven fabric, and silver nanoparticles were simultaneously inserted and reduced to increase the interlayer spacing of the rGO active layer, which effectively reduced the self-stacking effect of rGO and improved the overall electrochemical performance. 

Read the full story Posted: Oct 31,2024

New graphene-based memristors could expand graphene’s role in the semiconductor industry

Researchers from Queen Mary University of London and Paragraf Limited have reported a 'significant step forward in the development of graphene-based memristors' for potential use in future computing systems and artificial intelligence (AI). 

This innovation, which has been achieved at wafer scale, begins to pave the way toward scalable production of graphene-based memristors, devices crucial for non-volatile memory and artificial neural networks (ANNs). Memristors are recognized as potential game-changers in computing, offering the ability to perform analogue computations, store data without power, and mimic the synaptic functions of the human brain. The integration of graphene can enhance these devices dramatically, but has been notoriously difficult to incorporate into electronics in a scalable way until recently. 

Read the full story Posted: Oct 25,2024