Electronics - Page 13

Graphene Flagship team creates photosensitive graphene-based "switches"

Partners of the European Project 'Graphene Flagship' at the University of Strasbourg and CNRS (France), along with an international team of collaborators, created new 'switches' that respond to light. The team combined light-sensitive molecules with layers of graphene and other 2D materials to create new devices that could be used in sensors, optoelectronics and flexible devices.

Graphene Flagship team creates photosensitive graphene-based ''switches'' image

The researchers designed a molecule that can reversibly undergo chemical transformations when illuminated with ultraviolet and visible light. This molecule (a photoswitchable spiropyran) can be then attached to the surface of materials like graphene or molybdenum disulfide, thus generating an atomically precise hybrid macroscopic superlattice. When illuminated, the whole supramolecular structure experiences a collective structural rearrangement, which could be directly visualized with a sub-nanometer resolution by scanning tunneling microscopy.

Read the full story Posted: Aug 16,2018

Researchers manipulate the width of GNRs to create quantum chains that could be used for nano-transistors and quantum computing

Researchers at EMPA (Swiss Federal Laboratories for Materials Science and Technology), along with colleagues from the Max Planck Institute for Polymer Research in Mainz and other partners, have succeeded in precisely controlling the properties of graphene nano-ribbons (GNRs) by specifically varying their shape. This can be used to generate specific local quantum states, and could in the future be used for precise nano-transistors or possibly even quantum computing.

Researchers manipulate the width of GNRs to create quantum chains that could be used for nano-transistors and quantum computing image

The team has shown that if the width of a narrow graphene nano-ribbon changes, in this case from seven to nine atoms, a special zone is created at the transition: because the electronic properties of the two areas differ in a special, topological way, a "protected" and thus very robust new quantum state is created in the transition zone. This local electronic quantum state can be used as a basic component to produce tailor-made semiconductors, metals or insulators - and perhaps even as a component in quantum computers.

Read the full story Posted: Aug 12,2018

Archer Exploration develops graphene-enhanced inks

Archer Exploration, in collaboration with The University of Adelaide, has developed graphene-based conductive inks derived from Archer’s Campoona graphite deposit. The inks produced were used to print electronic circuits with an inkjet printer, later using a laser-scribed printer for the preparation of basic electrode patterns.

Archer graphene inks used to print circuits imageCentimetre-sized printed graphene electronics (electrodes) on plastic (polyethylene terephthalate) using graphene inks derived from Archer’s Campoona graphite

The graphene inks were reportedly prepared using a combination of established methods and proprietary methods that took advantage of the superior physical and chemical properties of Archer’s Campoona graphite. The rheological properties of inks are yet to be tested and optimized, and are the subject of the ongoing collaboration. The Company stated that the results of the work will be used to secure intellectual property rights to commercially viable technology integrating printed graphene componentry for biosensing devices.

Read the full story Posted: Aug 01,2018

Researchers turn graphene into a molecular toggle switch

A team of researchers from Denmark, Italy and Portugal recently discovered a new mechanism for controlling electronic devices using molecules. The researchers have shown that the ferroelectric ordering of polar molecules attached to the edge of graphene can be toggle-switched by an electrostatic gate and can be used for memory devices and sensors.

turning graphene into a molecular toggle switch image

Molecular electronics aims to use individual molecules to control electronics. The large library of molecules and techniques to modify them can create more sophisticated electronics than previously thought possible. The normal hindrance is the small size of the molecules. It's possible to create them, but they are incredibly difficult to handle. It is almost impossible to manipulate small enough features in ordinary materials to electrically connect with individual molecules.

Read the full story Posted: Jul 29,2018

China-based Shenzhen Danbond begins trials for mass production of graphene film for heat dissipation

A China-based company named Shenzhen Danbond Technology announced that it had begun mass production trials of a self-developed graphene product.

Danbond graphene film for heat dissipation image

The product seems to be a highly-conductive film that can be used in electric vehicle batteries, to dissipate heat in electronic devices and in solar power generation and flexible screens, according to the company. It reportedly plans to begin mass production early next year.

Read the full story Posted: Jul 18,2018

First Graphene and Flinders University form a new company to commercialize VFD technology

First Graphene is collaborating with Flinders University to launch 2D Fluidics - a company that will aim to commercialize the Vortex Fluidic Device (VFD). 2D Fluidics is 50% owned by FGR and 50% by Flinders University’s newly named Flinders Institute for NanoScale Science and Technology.

The VFD was invented by the Flinders Institute for NanoScale Science and Technology’s Professor Colin Raston and enables new approaches to producing a wide range of materials such as graphene and sliced carbon nanotubes. The key intellectual property used by 2D Fluidics comprises two patents around the production of carbon nanomaterials, assigned by Flinders University.

Read the full story Posted: Jun 24,2018

G3 launches G3-Fireshield Technology, a graphene-based line of components for the reduction of battery fires

Global Graphene Group (G3) logo imageGlobal Graphene Group (G3), the holding company of Angstron Materials and Nanotek Instruments, has announced G3-Fireshield Technology a suite of next generation battery components to dramatically reduce the risk of fire occurrences in EVs, portable electronics, and a range of other devices.

G3 states that this breakthrough is the first of its kind to overcome the intrinsic flammability problems associated with multiple battery material components. G3 explains that a conventional Li-ion battery is made up of three primary components: a negative electrode, a separator soaked in electrolyte solution, and a positive electrode. At elevated temperatures, brought on by mechanical, electrical or thermal abuse, each of these components undergoes chemical and/or structural changes that release energy from the cell in harmful ways.

Read the full story Posted: Jun 18,2018

Rice University team creates 3D objects from graphene foam

Rice University scientists have developed a simple way to create conductive, 3D objects made of graphene foam. The resulting objects may offer new possibilities for energy storage and flexible electronic sensor applications, according to Rice chemist Prof. James Tour.

Rice team creates 3D objects from graphene foam image

The technique is an extension of groundbreaking work by the Tour lab that produced the first laser-induced graphene (LIG) in 2014 by heating inexpensive polyimide plastic sheets with a laser. The laser burns halfway through the plastic and turns the top into graphene that remains attached to the bottom half. LIG can be made in macroscale patterns at room temperature.

Read the full story Posted: Jun 18,2018

Researchers develop a graphene-based approach to making light interact with matter

Researchers at MIT and Israel's Technion have used graphene to devise a new way of enhancing the interactions between light and matter, in a work that could someday lead to more efficient solar cells that collect a wider range of light wavelengths, and new kinds of lasers and light-emitting diodes (LEDs) that could have fully tunable color emissions.

Researchers devise new way to make light interact with matter image

The basic principle behind the new approach is a way to get the momentum of light particles (photons) to more closely match that of electrons, which is normally much greater. This huge difference in momentum normally causes these particles to interact very weakly; bringing their momenta closer together enables much greater control over their interactions, which could enable new kinds of basic research on these processes as well as a host of new applications, the researchers say.

Read the full story Posted: Jun 05,2018

Signet announces Hycarb acquisition

HyCarb logo imageSignet International Holdings has announced a Letter of Intent for the acquisition of HyCarb, a Florida-based company operating in association with the University of Central Florida in Orlando, Florida to develop graphene-enhanced batteries.

HyCarb has reported that it is currently completing the prototype of its first phase, the "HyCarb Coin Cell Battery". The battery is expected to be ready for manufacturing within the next year. "This new generation Graphene battery has proven to be amazing," says Signet's president Thomas Donaldson. "Within the next twelve months, we will be on the market delivering a coin cell battery far superior than the Lithium Ion battery in use today."

Read the full story Posted: May 27,2018