Electronics - Page 23

NUS researchers design ultra-sensitive graphene-based magnetic sensor

Researchers from the National University of Singapore (NUS) have developed a hybrid magnetic sensor that is reportedly more sensitive than most commercially available sensors. This could encourage the development of smaller and cheaper sensors for areas like consumer electronics, information and communication technology and automotive, as well as applications like thermal switches, hard drives and magnetic field sensors.

The sensor is made of graphene and boron nitride, and includes layers of carrier-moving channels, each of which can be controlled by the magnetic field. The researchers characterized the sensor by testing it at various temperatures, angles of magnetic field, and with a different pairing material. Graphene-based magnetoresistance sensors hold immense promise over existing sensors due to their stable performance over temperature variation and eliminating the necessity for expensive wafers or temperature correction circuitry. Production cost for graphene is also much lower than silicon and indium antimonide.

Read the full story Posted: Oct 31,2015

Thomas Swan extends graphene product portfolio

Thomas Swan has announced the availability of two new graphene grades: Elicarb Electrical Grade Graphene Powder for conductive inks and Elicarb Materials Grade Graphene Powder for composites & plastics. In combination with the company's existing products of Elicarb Premium Grade Graphene Powder and Elicarb Premium Grade Graphene Dispersion (AQ) which are meant for electronics & displays applications, the company now provides a full suite of graphene products.

Thomas Swan states that it continues to focus on reliably delivering high quality, consistent graphene products via the Direct Exfoliation process which extracts graphene directly from graphite raw materials. By tuning its extraction process, the company can produce graphene products that range from the Few Layer Graphene through to the Multi-Layer graphene nanoplatelet. 

Read the full story Posted: Oct 31,2015

Haydale's GNPs used in functional graphene ink

Haydale recently announced that its proprietary HDPlas technology has been used to create functionalized Graphene Nanoplatelets (GNPs) that have been incorporated into a functional graphene ink, which has been developed for screen printing. The ink has been created with area printing applications in mind.

A recent report details how a screen-printable functional graphene based ink, supplied by Goodfellow, performs better than many normal carbon-based ink, opening the door to innovative applications that require enhanced electrical conductivity, excellent adhesion on a range of substrates and high print resolution. Such applications are found in sensors, displays, printed electronics and electrodes.

Read the full story Posted: Oct 29,2015

Graphene nano-coils could replace solenoids for miniature electronics

Researchers at Rice University found that graphene nano-coils possess natural electromagnetic properties and can help in scaling down electronics by possibly replacing common solenoids (wires coiled around a metallic core that produce a magnetic field when carrying current, turning them into electromagnets. Solenoids also serve as inductors, primary components in electric circuits that regulate current, and in their smallest form are part of integrated circuits). 

The researchers discovered that when a voltage is applied, current will flow around the helical path and produce a magnetic field, as it does in macro inductor-solenoids. These graphene coil-structures are even found to form naturally during graphite growth, so they don't require complicated configuration or assembly. The researchers believe it should be possible to isolate graphene coil formations from crystals of graphitic carbon (graphene in bulk form), but enticing graphene sheets to grow in a spiral would allow for better control of its properties. 

Read the full story Posted: Oct 17,2015

An innovative process enables unprecedented control over graphene oxide's electrical properties

Researchers at Binghamton University have demonstrated an eco-friendly process that enables unprecedented spatial control over the electrical properties of graphene oxide, which is said to have the potential to revolutionize flexible electronics, solar cells and biomedical instruments.

By using the probe of an atomic force microscope to trigger a local chemical reaction, the scientists showed that electrically conductive features as small as 4 nanometers can be patterned into individual graphene oxide sheets. This approach makes it possible to draw nanoscale electrically-conductive features in atomically-thin insulating sheets with the highest spatial control reported so far, and unlike standard methods for manipulating the properties of graphene oxide, the process can be implemented under ambient conditions and is environmentally-benign, making it a promising step towards the practical integration of graphene oxide into future technologies.

Read the full story Posted: Oct 15,2015

UK collaboration seeks to develop graphene-based ultra-barrier materials for displays and electronics

The Centre of Process Innovation (CPI) has announced that it will be part of a UK-based collaboration to develop the next generation of graphene-based ultra-barrier materials for flexible transparent plastic electronic based displays. The materials on which this work focuses on are required for the next generation of smartphones, tablets and wearable electronics and the twelve month project titled ‘Gravia’ will investigate the feasibility of producing graphene-based barrier films for next generation flexible OLED lighting and display products. 

The project combines the skills from each of the partners (University of Cambridge, FlexEnable Ltd, the National Physical Laboratory and the Centre for Process Innovation) and expects to deliver a feasible material and process system. It builds upon significant existing investments by InnovateUK and the EPSRC in this area. The resulting ultra-barrier material can be potentially used in a wide range of novel applications by the lead business partner, FlexEnable.

Read the full story Posted: Oct 08,2015

Graphene transistors on Scotch tape

A group of Korean scientists demonstrated a novel concept of graphene transistors on Scotch tape for use in ubiquitous electronic systems. Unlike common plastic substrates, the Scotch tape substrate is easily attached onto various objects such as banknotes, curved surfaces, and human skin, which implies potential applications wherein electronics can be placed in any desired position. Also, the Scotch tape serves as an agreeable substrate for flexible/foldable electronics that can be significantly bent, or even crumpled.

Read the full story Posted: Sep 07,2015

Seamlessly bonded graphene and CNTs form a 3D material that maintains conductivity

In a research funded by a U.S. Department of Defense-Multidisciplinary University Research Initiative grant and Wenzhou Medical University, an international team of scientists has developed what is referred to as the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in 3D. The research may hold potential for increased energy storage in high efficiency batteries and supercapacitors, increasing the efficiency of energy conversion in solar cells, for lightweight thermal coatings and more. 

The group's early testing showed that a 3D fiber-like supercapacitor made with uninterrupted fibers of carbon nanotubes and graphene matched or even surpassed bettered the reported record-high capacities for such devices. When tested as a counter electrode in a dye-sensitized solar cell, the material enabled the cell to convert power with up to 6.8% efficiency and more than doubled the performance of a similar cell that used an expensive platinum wire counter electrode. 

Read the full story Posted: Sep 07,2015

IDTechEx's analyst explains his views on the graphene market

Dr Khasha Ghaffarzadeh, IDTechExA few weeks ago we reported on a new IDTechEx market report, in which they predict that the graphene market will reach nearly $200 million by 2026, with the estimation that the largest sectors will be composites, energy applications and graphene coatings.

We were very interested in learning more, and Dr Khasha Ghaffarzadeh, IDTechEx's head of consulting was kind enough to answer a few questions and explain the company's view on the graphene market.

Q: IDTechEx has been following graphene for a long time with dedicated events and reports. Why is this new material interesting for IDTechEx?

We have a long track record of analyzing emerging advanced materials such as quantum dots, CNTs, Ag nanostructures, silicon nanostructures, OLED materials, etc. We were however pulled into the world of graphene by our clients’ questions. Once in, we soon realized that there is a big synergy between graphene and our events. in fact, our events on supercapacitors and printed electronics were the right near-term addressable market for graphene, and that is why we managed to rapidly build up the largest business-focused event on graphene. Our events on graphene are held in the USA and Europe each year see www.IDTechEx.com/usa.

Read the full story Posted: Sep 04,2015