Scientists design a new process that forms 3D shapes from flat sheets of graphene
Researchers from the University of Illinois at Urbana-Champaign have developed a new approach for forming 3D shapes from flat sheets of graphene. This technique may open the door to future integrated systems of graphene-MEMS hybrid devices and flexible electronics.
The study demonstrated graphene integration to a variety of different microstructured geometries, including pyramids, pillars, domes, inverted pyramids, and the 3D integration of gold nanoparticles (AuNPs)/graphene hybrid structures. The flexibility and 3D nature of the structures could enable biosensing devices which can be made in various shapes and carry many biological functions. The scientists also expect that the new 3D integration approach will facilitate advanced classes of hybrid devices between microelectromechanical systems (MEMS) and 2D materials for sensing and actuation.