Graphene for Automotive - Page 10

Directa Plus signs collaboration agreement with Italdesign for graphene-enhanced automotive parts

Directa Plus recently signed a technical and commercial agreement with automotive design and engineering firm Italdesign.

The partnership has been signed for an initial nine years to explore, test, and build automotive components that are enhanced by properties of the company's proprietary graphene technology. Applications could include car interiors, paints, and mechanical components.

Read the full story Posted: Aug 05,2020

Nanotech Energy concludes $27.5 Million funding round and announces non-flammable battery ready for commercialization

Los Angeles-based NanotNanotech Energy logo imageech Energy has announced the official close of its Series C round of funding. This round was expected to close at $25 million, yet included an option to allow for an additional $2.5 million for a total of $27.5 million invested.

This round of funding with such high-level and committed investors validates the need the international market has for our proprietary battery technology, said Dr. Jack Kavanaugh, chairman and CEO of Nanotech Energy Inc. We are confident that we have a one-of-a-kind, industry-changing product that will impact the technologies and bottom lines of multiple end-user markets. This round of funding allows us to dramatically expand our production of graphene batteries, as well as our production of conductive epoxies, conductive inks and electromagnetic interference shielding spray paints and films. This will also facilitate our efforts to further increase our large-scale manufacturing of high-quality graphene that we provide for use in downstream applications.

Read the full story Posted: May 19,2020

Graphene-enhanced carbon fiber could lead to affordable, stronger aerospace and automotive materials

A research team, which includes researchers from Penn State, the University of Virginia and Oak Ridge National Laboratory, in collaboration with industry partners Solvay and Oshkosh, has found that adding small amounts of graphene to the production process of carbon fibers - which are typically expensive to make - both reduces the production cost and strengthens the fibers and so could one day lead to using these lightweight, high-strength materials to improve safety and reduce the cost of producing planes and cars.

For decades, carbon fibers have been a mainstay of airplane production. If created in the right way, these long strands of carbon-based atoms are lightweight, stiff and strong. "Even though carbon fibers have really nice features, they would make a car far more expensive" with the way carbon fibers are manufactured now, said Adri van Duin, professor of mechanical and chemical engineering, Penn State. "If you can get these properties easier to manufacture then you can make cars significantly lighter, lower the cost of them and make them safer."

Read the full story Posted: May 19,2020

Researchers develop new high performance asymmetric supercapacitors

Researchers at Penn State and two universities in China have found that a new kind of supercapacitor, based on manganese oxide with cobalt manganese oxide as a positive electrode and a form of graphene oxide as a negative electrode, could combine the storage capacity of batteries with the high power and fast charging of other supercapacitors.

The group started with simulations to see how manganese oxide’s properties change when coupled with other materials. When they coupled it to a semiconductor, they found it made a conductive interface with a low resistance to electron and ion transport. This will be important because otherwise the material would be slow to charge.

Read the full story Posted: May 05,2020

Talga and Bentley Motors to develop graphene-enhanced motor parts

Talga Resources, battery anode and graphene additives developer, has announced that it has been approved for Innovate UK co-funding to support development of an e-axle designed for Bentley Motors.

Talga takes part in Bentley Motors project for graphene motor parts imageCopper windings in EV electric motors components. Image credit: Talga Resources

The OCTOPUS project aims to deliver the ultimate single unit e-axle solution designed specifically to meet Bentley Motors performance specifications via optimized motor and power electronics technology and materials. The project is funded under the Office for Low Emission Vehicles’ and Innovate UK’s IDP15: The Road to Zero Emission Vehicles competition.

Read the full story Posted: Apr 27,2020

Mercedes-Benz develops battery based on organic cell chemistry, graphene and a water-based electrolyte

Mercedes-Benz has reportedly created a compostable battery using organic cell chemistry, graphene and a water-based electrolyte. The battery is free of rare-earth and toxic metals, which means it can biodegrade without polluting the environment.

Mercedes-Benz' head of battery tech, Andreas Hintennach, said that while the tech is very promising, "we don't see that it's close to being used in production technology for now... It's around 15-20 years away."

Read the full story Posted: Apr 05,2020

G6 Materials and Gilman Industries start work on graphene-based green energy project

G6 Materials Corp. (formerly known as "Graphene 3D Lab) has announced the start of a new green-energy focused collaboration with Gilman Industries, a company focused on commercializing its hydrogen-producing technology. The objective of the project is to develop a new generation of Evolve, a proprietary hydrogen generator that produces hydrogen by splitting water with an electric current.

During the course of this project, G6 will develop a robust graphene-based material for electrodes within the hydrogen generator. Introducing a resilient graphene-based material has the potential to deliver chemical stability that could allow the generator to operate with seawater, which if successful, would drastically expand the range of potential applications.

Read the full story Posted: Feb 13,2020

Log9 Materials bets on graphene-based aluminium fuel cells for future EVs

India-based Log9 Materials believes that the key to better EVs is to focus on energy-generation, instead of energy storage. Log9 Materials says that a car powered by aluminium fuel cells can have a range of 1000 km post which the aluminium plates can be replaced within minutes.

According to Log9, aluminium fuel cells would primarily use three components aluminium, water, and carbon in the form of graphene. In simple words, there’s water between layers of graphene, and when aluminium comes in contact with water, it corrodes releasing energy. Log9 explains that procuring raw materials for aluminium fuel cells is much simpler than those for lithium-ion batteries which use lithium and cobalt, so manufacturing cost can be considerably lower for aluminium fuel cells than lithium-ion battery packs.

Read the full story Posted: Jan 13,2020

New graphene-based lithium-air battery may enable longer-running electric cars

Researchers at the Korean Daegu Gyeongbuk Institute of Science and Technology (DGIST) have fabricated an electrode using nickel cobalt sulphide nanoflakes on a sulfur-doped graphene, leading to a long-life battery with high discharge capacity. This improvement of lithium-air batteries' performance may bring us a step closer to electric cars that can use oxygen to run longer before they need to recharge.

"The driving distance of electric cars running on lithium-ion batteries is about 300 kilometers," says chemist Sangaraju Shanmugam of DGIST. "This means it's difficult to make a round trip between Seoul and Busan on these batteries. This has led to research on lithium-air batteries, due to their ability so store more energy and thus provide longer mileage."

Read the full story Posted: Jan 12,2020