University of Manchester - Page 9

Manchester team adds graphene to jute fibers

Scientists from The University of Manchester have combined graphene with the natural fiber jute, to create graphene-strengthened natural jute fiber composites. The team explains that this could lead to the manufacturing of high-performance and environmentally friendly natural fiber composites that could replace their synthetic counterparts in major manufacturing areas, like the automotive industry, ship building, durable wind turbine blades and more.

Manchester team adds graphene to just fibers image

It could also boost the farming economies of countries such as Bangladesh, India, and China where the jute material is mainly produced the researchers from The University of Manchester claim. Jute is extracted from the bark of the white jute plant (Corchorus capsularis) and is a 100% bio-degradable, recyclable and environmentally friendly natural fiber. It is also the second most produced natural fiber in the world after cotton and is at least 50% cheaper than flax and other similar natural fibers.

Read the full story Posted: Dec 03,2018

Research behind the world's lightest graphene watch revealed

In January 2017 the world's lightest mechanical chronograph watch was unveiled in Geneva, Switzerland, made with an innovative graphene-enhanced composite material. Now, the research behind the project has been published. The unique watch was a result of a collaboration between the University of Manchester, Richard Mille Watches and McLaren Applied Technologies.

The RM 50-03 watch was made using a unique composite incorporating graphene to create a strong but lightweight case that contains the watch mechanism, which weighed around 40 grams in total, including the strap. The collaboration explored the methods of correctly aligning graphene within a composite to make the most of the material's superlative properties of mechanical stiffness and strength whilst negating the need for the addition of other, weightier materials.

Read the full story Posted: Sep 03,2018

Pipes laminated with graphene could reduce corrosion in the oil and gas industry

Researchers at The University of Manchester and TWI have discovered ways of using graphene to prolong the lifetime of pipes used in the oil and gas industry. The team has designed a way of incorporating graphene into a polymer liner used in pipes that transport crude oil and gas from the sea floor. This technology has the potential to extend the life of the underwater pipework and therefore reduce the time between repairs.

Such pipes are generally made of internal layers of polymer or composite and external strengthening steel. Within these pipes, fluids may be at very high pressure and elevated temperature. In situations where carbon dioxide (CO2), hydrogen sulfide (H2S) and water permeate through the protective barrier layer of the pipe, the steel may corrode causing the pipe to lose strength over time, leading to a risk of catastrophic failure.

Read the full story Posted: Aug 28,2018

Graphene enables novel thermal camouflage system

Researchers from Bilkent University and Izmir Institute of Technology in Turkey, MIT and University of Manchester have developed a system that can reconfigure its thermal appearance to blend in with varying temperatures in a matter of seconds.

Graphene thermal camouflage system image

Previously, scientists have tried to develop thermal camouflage for various applications, but they have encountered problems such as slow response speed, lack of adaptability to different temperatures and the requirement for rigid materials. The team in this research wanted to develop a fast, rapidly adaptable and flexible material.

Read the full story Posted: Jun 28,2018

Inov-8 and manchester University launch graphene-enhanced shoes

In December 2017, Manchester University teamed up with British sportswear brand Inov-8 to become the world's first company to incorporate graphene into running and fitness shoes. Now, Inov-8 announced a new shoe that features graphene, which are hoped to be "a game changer in the industry".

Inov-8 and Manchester University's launch graphene-enhanced shoes image

The Ultimate goal will be to reduce the weight of running shoes by 50%, according to Michael Price, Inov-8’s product and marketing director. The company announced The G-Series range which includes three different shoes two trail-oriented shoes and one geared for cross-training. The Company estimates that the TerraUltra G 260 will likely be the most popular in Canada it’s geared for more strenuous trail efforts. The Mudclaw G 260 is geared for extra muddy terrain and obstacle courses. Finally the F-Lite G 290 has been developed for cross-fit athletes to wear in the gym. Each shoe includes graphene-enhanced rubber outsoles and breathable mesh uppers that are enforced with Kevlar.

Read the full story Posted: Jun 20,2018

CPI and NCC to jointly develop next-gen graphene-based materials

The Center for Process Innovation (CPI) will be collaborating with the National Composites Center (NCC) to develop advanced lightweight materials. The project, known as ‘Enhanced structural composites’ (ECOi), is evaluating the functionality and applicability of new graphene-enhanced materials in a variety of industries.

The University of Manchester will be consulting on the ECOi project at their National Graphene Institute, to generate and test a variety of new graphene composites that have improved functional properties compared to current materials.

Read the full story Posted: May 04,2018

The dispute over the origins of terahertz photoresponse in graphene results in a draw

Researchers at the Russia-based MIPT, MSPU and the University of Manchester revealed the mechanisms leading to photocurrent in graphene under terahertz radiation. The paper is said to put an end to a long-lasting debate about the origins of direct current in graphene illuminated by high-frequency radiation, and also sets the stage for the development of high-sensitivity terahertz detectors. Such detectors have applications in medical diagnostics, wireless communications and security systems.

Wiring diagram of a graphene-based terahertz detector image

In 2005, MIPT alumni Andre Geim and Konstantin Novoselov experimentally studied the behavior of electrons in graphene and found that electrons in graphene respond to electromagnetic radiation with an energy of quantum, whereas the common semiconductors have an energy threshold below which the material does not respond to light at all. However, the direction of electron motion in graphene exposed to radiation has long remained a point of controversy, as there is an abundance of factors pulling it in different directions. The controversy was especially stark in the case of the photocurrent caused by terahertz radiation.

Read the full story Posted: Apr 26,2018

Graphene and hBN used to create unique 2D quantum bits

Two novel 2D materials, graphene and hexagonal boron nitride, and the tip of a scanning tunneling microscope these were the ingredients used to create a novel kind of a so-called quantum dot. These extremely small nanostructures allow delicate control of individual electrons by fine-tuning their energy levels directly. Such devices can be key for modern quantum technologies.

Graphene and hBN 2D quantum bits image

The theoretical simulations for the new technology were performed at TU Wien. The experiment involved RWTH Aachen and the team around Nobel-prize laureates Andre Geim and Kostya Novoselov from Manchester who prepared the samples.

Read the full story Posted: Mar 21,2018

NGI and ATI release a joint paper on the potential of graphene in aerospace

The Aerospace Technology Institute (ATI) and the National Graphene Institute (NGI) at The University of Manchester have published a joint paper on the potential of graphene in aerospace, or more precisely the potential market opportunities available to UK aerospace companies. Organizations that also worked on the paper included the University of Central Lancashire, the Center for Process Innovation, QinetiQ, Morson Projects Limited and Haydale with input from Ekosgen.

The safety and performance properties of aircraft could be significantly improved by incorporating atomically-thin graphene into existing materials used to build planes, while the reduced weight of the material could have a positive impact on the fuel efficiency of the aircraft and, as result, the environment.

Read the full story Posted: Mar 14,2018

Graphene oxide is detected in the body by specialized cells of the immune system

Researchers at Karolinska Institutet, the University of Manchester and Chalmers University of Technology have shown that the human immune system handles graphene oxide in a manner similar to pathogens, possibly leading to safer biomedical applications in the future.

Graphene oxide is detected by specialized cells of the immune system image

Graphene oxide is currently being studied for use in various drug delivery methods and other medical applications (among other non-medical applications). However, it is of critical importance to understand how these materials interact with the body. The study shows that neutrophils, the most common type of white blood cell specialized in combating infections, release so-called neutrophil extracellular traps (NETs) when encountering GO. NETs are made up of a "spider-web" of DNA decorated with proteins that help neutrophils to destroy microorganisms such as bacteria and fungi.

Read the full story Posted: Jan 28,2018