Researchers from South Korea have created a graphene nanoribbon sensor which can measure high vacuum pressures.
The Researchers synthesized a mixture of graphene nanoribbons (of varying size and chemical composition) from a combination of multi-walled carbon nanotubes, sulphuric acid and phosphoric acid in a chemical exfoliation approach. The result was a mixture of several graphene nanoribbons which were separated and purified ready for device implementation and testing. The Researchers also synthesized graphene oxide through a modified Hummers’ method for use as a reference material.
The sheet resistance of the sensor devices decreased with a decreasing pressure, until the pressure reached between 1 and 10 Torr. A reduction in the pressure beyond this resulted in a change in the electrical behavior of the graphene sheet(s), and the specific changes were largely dependent upon the temperature of the surrounding environment. At temperatures around 30 °C, the sheet resistance was also found to decrease, whereas at temperatures around 100 °C, the sheet resistance was found to increase.
The changes in the sheet resistance with respect to atmospheric temperature were also explained in the paper by a hypothesis based on van der Waals attraction chemistry. The hypothesis states that the local effect of van der Waals forces created a shorter distance between the graphene sheets due to the attractive force of the carbon clusters in the sheets possessing a smaller value than the sum of their vibrational and elastic forces.
The shorter sheet distance is thought to be directly responsible for the decrease in the sheet resistance, and was verified experimentally in their XRD analyzes. On the other hand, an increase in the sheet resistance was also found to be a direct result of the shortening of the local distance of carbon clusters.
The response of the graphene sensor to changes in pressure within the high vacuum was rapid and possessed a response of the order of a few seconds. The graphene nanoribbons reduced the response time (compared to the reference) by providing a shorter diffusion path for the detectable gas molecules.
The sensitivity of the sensor was also found to be three times greater than the device containing reduced graphene oxide, as well as other common pressure sensors. The sensor could also detect changes in vacuum pressure up to 8x10-7 Torr.
The researchers stated that the sensor is also expected to be able to read high vacuum pressures and possess a high durability to pressure shocks and now offers a new way of measuring changes in pressure, whilst opening a new area of potential sensor research.