Graphene-based sustainable E-textiles for early detection of diseases
A research team, led by the University of Southampton and UWE Bristol, has developed graphene-based wearable electronic textiles (e-textiles) that are sustainable and biodegradable. In their new study, the team (which also involved the universities of Exeter, Cambridge, Leeds and Bath), describes and tests a new sustainable approach for fully inkjet-printed, eco-friendly e-textiles named 'Smart, Wearable, and Eco-friendly Electronic Textiles', or 'SWEET'.
a) Schematic of two important vital signs: skin surface temperature and heart rate of the human body. b) Schematic of wearable e-textiles as gloves. c) Schematic of the position of wearable textile electrode on human skin surface contact. d) Schematic of the textile electrode. e) Schematic of the textile electrodes' composition. f) Schematic of sustainable design approach for wearable e-textiles, including sustainable materials, sustainable manufacturing, and sustainability assessment. Image from: Energy and Environmental Materials
E-textiles are usually embedded with electrical components, such as sensors, batteries or lights. They might be used in fashion, for performance sportwear, or for medical purposes as garments that monitor people's vital signs. Such textiles need to be durable, safe to wear and comfortable, but also, in an industry which is increasingly concerned with clothing waste, they need to be easy on the environment when no longer required.